Skip to main content
Log in

On the Usage of Geomagnetic Indices for Data Selection in Internal Field Modelling

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We present a review on geomagnetic indices describing global geomagnetic storm activity (Kp, am, Dst and dDst/dt) and on indices designed to characterize high latitude currents and substorms (PC and AE-indices and their variants). The focus in our discussion is in main field modelling, where indices are primarily used in data selection criteria for weak magnetic activity. The publicly available extensive data bases of index values are used to derive joint conditional Probability Distribution Functions (PDFs) for different pairs of indices in order to investigate their mutual consistency in describing quiet conditions. This exercise reveals that Dst and its time derivative yield a similar picture as Kp on quiet conditions as determined with the conditions typically used in internal field modelling. Magnetic quiescence at high latitudes is typically searched with the help of Merging Electric Field (MEF) as derived from solar wind observations. We use in our PDF analysis the PC-index as a proxy for MEF and estimate the magnetic activity level at auroral latitudes with the AL-index. With these boundary conditions we conclude that the quiet time conditions that are typically used in main field modelling (\(\mathit{PC}<0.8\), \(\mathit{Kp}<2\) and \(|\mathit{Dst}|<30~\mbox{nT}\)) correspond to weak auroral electrojet activity quite well: Standard size substorms are unlikely to happen, but other types of activations (e.g. pseudo breakups \(\mathit{AL}>-300~\mbox{nT}\)) can take place, when these criteria prevail. Although AE-indices have been designed to probe electrojet activity only in average conditions and thus their performance is not optimal during weak activity, we note that careful data selection with advanced AE-variants may appear to be the most practical way to lower the elevated RMS-values which still exist in the residuals between modeled and observed values at high latitudes. Recent initiatives to upgrade the AE-indices, either with a better coverage of observing stations and improved baseline corrections (the SuperMAG concept) or with higher accuracy in pinpointing substorm activity (the Midlatitude Positive Bay-index) will most likely be helpful in these efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • B.-H. Ahn, S.-I. Akasofu, Y. Kamide, The Joule heat production rate and the particle energy injection rate as function of the geomagnetic indices AE and AL. J. Geophys. Res. 88(A8), 6275–6287 (1983). doi:10.1029/JA088iA08p06275/

    Article  ADS  Google Scholar 

  • J.H. Allen, H.W. Kroehl, Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices. J. Geophys. Res. 80(25), 3667–3677 (1975). doi:10.1029/ja080i025p03667

    Article  ADS  Google Scholar 

  • K.A. Anderson, Radial dependence of energetic electron fluxes in the tail of the Earth’s magnetic field. Phys. Rev. Lett. 14, 888–890 (1965). doi:10.1103/PhysRevLett.14.888

    Article  ADS  Google Scholar 

  • K.B. Baker, S. Wing, A new magnetic coordinate system for conjugate studies at high latitudes. J. Geophys. Res. 94(A7), 9139–9143 (1989). doi:10.1029/JA094iA07p09139

    Article  ADS  Google Scholar 

  • W. Baumjohann, Y. Kamide, Hemispherical Joule heating and the AE indices. J. Geophys. Res. 89(A1), 383–388 (1984). doi:10.1029/JA089iA01p00383

    Article  ADS  Google Scholar 

  • S. Chapman, An outline of a theory of magnetic storms. Proc. R. Soc. Lond., a Contain. Pap. Math. Phys. Character 95, 61–83 (1918)

    Article  ADS  Google Scholar 

  • X. Chu, T.-S. Hsu, R.L. McPherron, V. Angelopoulos, Z. Pu, J.J. Weygand, K. Khurana, M. Connors, J. Kissinger, H. Zhang, O. Amm, Development and validation of inversion technique for substorm current wedge using ground magnetic field data. J. Geophys. Res. 119, 1909–1924 (2014). doi:10.1002/2013JA019185

    Article  Google Scholar 

  • X. Chu, R.L. McPherron, T.-S. Hsu, V. Angelopoulos, Solar cycle dependence of substorm occurrence and duration: implications for onset. J. Geophys. Res. 120, 2808–2818 (2015). doi:10.1002/2015JA021104

    Article  Google Scholar 

  • F.K. Chun, D.J. Knipp, M.G. McHarg, G. Lu, B.A. Emery, S. Vennerström, O.A. Troshichev, Polar cap index as a proxy for hemispheric Joule heating. Geophys. Res. Lett. 26(8), 1101–1104 (1999)

    Article  ADS  Google Scholar 

  • C.G. Constable, Parameter estimation in non-Gaussian noise. Geophys. J. 94, 131–142 (1988). http://gji.oxfordjournals.org/content/94/1/131.full.pdf+html?sid=6cf52bd6-f6f8-4355-9607-65e16ac93b0b

    Article  ADS  Google Scholar 

  • T.N. Davis, M. Sugiura, Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 71(3), 785–801 (1966). doi:10.1029/jz071i003p00785

    Article  ADS  Google Scholar 

  • C.C. Finlay, S. Maus, C.D. Beggan, M. Hamoudi, F.J. Lowes, N. Olsen, E. Thébault, Evaluation of candidate geomagnetic field models for IGRF-11. Earth Planets Space 62(10), 787–804 (2010)

    Article  ADS  Google Scholar 

  • C.C. Finlay, N. Olsen, L. Tøffner-Clausen, DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planets Space 67, 114 (2015)

    Article  ADS  Google Scholar 

  • C.C. Finlay, V. Lesur, E. Thébault et al., Space Sci. Rev. (2016). doi:10.1007/s11214-016-0285-9

    Google Scholar 

  • R.A.D. Fiori, A.V. Koustov, D. Boteler, R.A. Makarevich, PCN magnetic index and average convection velocity in the polar cap inferred from SuperDARN radar measurements. J. Geophys. Res. 114, 07225 (2009). doi:10.1029/2008JA013964

    Article  Google Scholar 

  • E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58(4), 351–358 (2006)

    Article  ADS  Google Scholar 

  • J. Gannon, J. Love, USGS 1-min Dst index. J. Atmos. Sol.-Terr. Phys. 73(2), 323–334 (2011)

    Article  ADS  Google Scholar 

  • Y. Gao, M.G. Kivelson, R.J. Walker, The linear dependence of polar cap index on its controlling factors in solar wind and magnetotail. J. Geophys. Res. 117, 05213 (2012). doi:10.1029/2011JA017229

    Google Scholar 

  • J.W. Gjerloev, The SuperMAG data processing technique. J. Geophys. Res. 117, 09213 (2012). doi:10.1029/2012JA017683

    Article  Google Scholar 

  • L.V. Häkkinen, T.I. Pulkkinen, H. Nevanlinna, R.J. Pirjola, E.I. Tanskanen, Effects of induced currents on Dst and on magnetic variations at midlatitude stations. J. Geophys. Res. Space Phys. 107(A1) (2002). doi:10.1029/2001JA900130

  • B. Hamilton, Rapid modelling of the large-scale magnetospheric field from Swarm satellite data. Earth Planets Space 65, 1295–1308 (2013)

    Article  ADS  Google Scholar 

  • B. Hnat, S.C. Chapman, G. Rowlands, N.W. Watkins, M.P. Freeman, Scaling of solar wind \(\epsilon\) and the AU, AL and AE indices as seen by WIND. Geophys. Res. Lett. 29(22), 2078 (2002). doi:10.1029/2002GL016054

    Article  ADS  Google Scholar 

  • C.-S. Huang, Variations of polar cap index in response to solar wind changes and magnetospheric substorms. J. Geophys. Res. 110, 01203 (2005). doi:10.1029/2004JA010616

    Article  Google Scholar 

  • T. Iyemori, Storm-time magnetospheric currents inferred from mid-latitude geomagnetic variations. J. Geomagn. Geoelectr. 42, 1249–1265 (1990). doi:10.5636/jgg.42.1249

    Article  ADS  Google Scholar 

  • A. Janzhura, O. Troshichev, P. Stauning, Unified PC indices: relation to isolated magnetic substorms. J. Geophys. Res. 112, 09207 (2007). doi:10.1029/2006JA012132

    Article  Google Scholar 

  • L. Juusola, N. Østgaard, E. Tanskanen, N. Partamies, K. Snekvik, Earthward plasma sheet flows during substorm phases. J. Geophys. Res. 116, 10228 (2011). doi:10.1029/2011JA016852

    Google Scholar 

  • E.I. Kallio, T.I. Pulkkinen, H.E.J. Koskinen, A. Viljanen, Loading-unloading processes in the nightside ionosphere. Geophys. Res. Lett. 27(11), 1627–1630 (2000). doi:10.1029/1999GL003694

    Article  ADS  Google Scholar 

  • J.R. Kan, L.C. Lee, Energy coupling function and solar wind—magnetosphere dynamo. Geophys. Res. Lett. 6(7), 557–560 (1979). doi:10.1029/GL006i007p00577

    Article  ADS  Google Scholar 

  • A. Karinen, K. Mursula, A new reconstruction of the Dst index for 1932–2002. Ann. Geophys. 23, 475–485 (2005)

    Article  ADS  Google Scholar 

  • K. Kauristie, Statistical fits for auroral oval boundaries during the substorm sequence. J. Geophys. Res. 100(A11), 21885–21895 (1995). doi:10.1029/95JA01627

    Article  ADS  Google Scholar 

  • K. Kauristie, T.I. Pulkkinen, R.J. Pellinen, H.J. Opgenoorth, What can we tell about global auroral electrojet activity from a single meridional magnetometer chain? Ann. Geophys. 14(11), 1177–1185 (1996)

    Article  ADS  Google Scholar 

  • W. Kertz, Ein neues mass für die feldstärke des erdmagnetischen äquatorialen ringstroms. Abh.-Akad. Wiss. Goettin., Math. Phys. Kl. 2, 1–83 (1958)

    Google Scholar 

  • W. Kertz, Ring current variations during the IGY. Ann. Int. Geophys. Year 35 (1964)

  • M.G. Kivelson, C.T. Russell, Introduction to Space Physics (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  • V. Lesur, I. Wardinski, M. Rother, M. Mandea, GRIMM: the GFZ reference internal magnetic model based on vector satellite and observatory data. Geophys. J. Int. 173, 382–394 (2008)

    Article  ADS  Google Scholar 

  • V. Lesur, I. Wardinski, M. Hamoudi, M. Rother, The second generation of the GFZ reference internal magnetic model: GRIMM-2. Earth Planets Space 62(10), 765–773 (2010)

    Article  ADS  Google Scholar 

  • J.V. Lincoln, Geomagnetic indices, in Physics of Geomagnetic Phenomena, ed. by S. Matsushita, W.H. Campbell. International Geophysics Series, vol. 1, 1st edn. (Academic Press, New York, 1967), pp. 67–98

    Chapter  Google Scholar 

  • K. Liou, P.T. Newell, D.G. Sibeck, C.-I. Meng, M. Brittnacher, G. Parks, Observation of IMF and seasonal effects in the location of auroral substorm onset. J. Geophys. Res. 106(A4), 5799–5810 (2001). doi:10.1029/2000JA003001

    Article  ADS  Google Scholar 

  • K. Liou, J.F. Carbary, P.T. Newell, C.-I. Meng, O. Rasmussen, Correlation of auroral power with the polar cap index. J. Geophys. Res. 108(A3), 1108 (2003). doi:10.1029/2002JA009556

    Article  Google Scholar 

  • M. Lockwood, L. Barnard, H. Nevanlinna, M.J. Owens, R.G. Harrison, A.P. Rouillard, C.J. Davis, Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr—Part 2: a new reconstruction of the interplanetary magnetic field. Ann. Geophys. 31(11), 1979–1992 (2013). doi:10.5194/angeo-31-1979-2013

    Article  ADS  Google Scholar 

  • R.E. Lopez, C.C. Goodrich, M. Wiltberger, K. Papadopoulos, Simulation of the March 9, 1995 substorm and initial comparison to data, in Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics Program. Geophysical Monograph, vol. 104 (1998), pp. 237–245

    Google Scholar 

  • J. Love, J. Gannon, Revised Dst and the epicycles of magnetic disturbance: 1958–2007. Ann. Geophys. Atmos. Hidrosph. Space Sci. 27, 3101 (2009)

    Google Scholar 

  • A.T.Y. Lui, C.D. Anger, A uniform belt of diffuse auroral emission seen by the ISIS-2 scanning photometer. Planet. Space Sci. 21(5), 799 (1973). doi:10.1016/0032-0633(73)90097-4

    Article  ADS  Google Scholar 

  • S. Macmillan, N. Olsen, Observatory data and the Swarm mission. Earth Planets Space 65, 1355–1362 (2013)

    Article  ADS  Google Scholar 

  • S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005). doi:10.1111/j.1365-246X.2005.02691.x

    Article  ADS  Google Scholar 

  • S. Maus, P. Weidelt, Separating the magnetospheric disturbance magnetic field into external and transient internal contributions using a 1D conductivity model of the Earth. Geophys. Res. Lett. 31, L12614 (2004). doi:10.1029/2004GL020232

    ADS  Google Scholar 

  • S. Maus, C. Manoj, J. Rauberg, I. Michaelis, H. Lühr, NOAA/NGDC candidate models for the 11th generation international geomagnetic reference field and the concurrent release of the 6th generation Pomme magnetic model. Earth Planets Space 62(10), 729–735 (2010)

    Article  ADS  Google Scholar 

  • P.N. Mayaud, Une mesure planétaire dactivité magnétique basée sur deux observatoires antipodaux. Ann. Geophys. 27(1), 67–70 (1971)

    Google Scholar 

  • P.N. Mayaud, Derivation, Meaning, and Use of Geomagnetic Indices. Geophysical Monograph, vol. 22 (Am. Geophys. Union, Washington, 1980)

    Book  Google Scholar 

  • H. McCreadie, M. Menvielle, The PC index: review of methods. Ann. Geophys. 28, 1887–1903 (2010). http://www.ann-geophys.net/28/1887/2010/

    Article  ADS  Google Scholar 

  • R.L. McPherron, Growth phase of magnetospheric substorms. J. Geophys. Res. 75(28), 5592–5599 (1970). doi:10.1029/ja075i028p05592

    Article  ADS  Google Scholar 

  • R.L. McPherron, Magnetospheric substorms. Rev. Geophys. 17(4), 657 (1979). doi:10.1029/rg017i004p00657

    Article  ADS  Google Scholar 

  • R.L. McPherron, Earth’s magnetotail, in Magnetotails in the Solar System, ed. by A. Keiling, C.M. Jackman, P.A. Delamere. Geophysica Monograph, vol. 207 (Am. Geophys. Union, Washington, 2015), pp. 61–84

    Google Scholar 

  • M. Menvielle, A. Berthelier, The K-derived planetary indices: description and availability. Rev. Geophys. 3(29), 415–432 (1991)

    Article  ADS  Google Scholar 

  • M. Menvielle, T. Iyemori, A. Marchaudon, M. Nosé, Geomagnetic indices, in Geomagnetic Observations and Models (Springer, Dordrecht, 2010), pp. 183–228

    Google Scholar 

  • K. Mursula, A. Karinen, Explaining and correcting the excessive semiannual variation in the Dst index. Geophys. Res. Lett. 32(14) (2005). doi:10.1029/2005GL023132

  • H. Nevanlinna, E. Kataja, An extension of the geomagnetic activity index series aa for two solar cycles (1844–1868). Geophys. Res. Lett. 20(23), 2703–2706 (1993). doi:10.1029/93gl03001

    Article  ADS  Google Scholar 

  • P.T. Newell, J.W. Gjerloev, Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 116, 12211 (2011a). doi:10.1029/2011JA016779

    Article  Google Scholar 

  • P.T. Newell, J.W. Gjerloev, Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. J. Geophys. Res. 116, 12232 (2011b). doi:10.1029/2011JA016936

    Article  Google Scholar 

  • P.T. Newell, J.W. Gjerloev, SuperMAG-based partial ring current indices. J. Geophys. Res. 117, 05215 (2012). doi:10.1029/2012JA017586

    Google Scholar 

  • P.T. Newell, J.W. Gjerloev, Local geomagnetic indices and the prediction of auroral power. J. Geophys. Res. 119, 9790–9803 (2014). doi:10.1002/2014JA020524

    Article  Google Scholar 

  • P.T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, F.J. Rich, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 112(A1), 01206 (2007). doi:10.1029/2006JA012015

    Article  Google Scholar 

  • N. Olsen, F. Lowes, T.J. Sabaka, Ionospheric and induced field leakage in geomagnetic field models, and derivation of candidate models for DGRF 1995 and DGRF 2000. Earth Planets Space 57, 1191–1196 (2005a)

    Article  ADS  Google Scholar 

  • N. Olsen, T.J. Sabaka, F. Lowes, New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005. Earth Planets Space 57, 1141–1149 (2005b)

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Toffner-Clausen, S. Choi, CHAOS—a model of the Earth’s magnetic field derived from CHAMP, /Orsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006)

    Article  ADS  Google Scholar 

  • N. Olsen, M. Mandea, T.J. Sabaka, L. Toffner-Clausen, The CHAOS-3 geomagnetic field model and candidates for the 11th generation IGRF. Earth Planets Space 62(10), 719–727 (2010)

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, C.C. Finlay, T.J. Sabaka, I. Michaelis, J. Rauberg, L. Toffner-Clausen, The CHAOS-4 geomagnetic field model. Geophys. J. Int. 197, 815–827 (2014). doi:10.1093/gji/ggu033

    Article  ADS  Google Scholar 

  • N. Olsen, G. Hulot, V. Lesur, C.C. Finlay, C. Beggan, A. Chulliat, T.J. Sabaka, R. Floberghagen, E. Friis-Christensen, R. Haagmans, S. Kotsiaros, H. Lühr, L. Toffner-Clausen, P. Vigneron, The Swarm initial field model for the 2014 geomagnetic field. Geophys. Res. Lett. 42, 1092–1098 (2015). doi:10.1002/2014GL062659

    Article  ADS  Google Scholar 

  • H.J. Opgenoorth, M.A.L. Persson, M. Lockwood, R. Stamper, M.N. Wild, R. Pellinen, T. Pulkkinen, K. Kauristie, T. Hughes, Y. Kamide, A new family of geomagnetic disturbance indices, in Ground-Based Observations in Support of the Cluster Mission, ed. by M. Lockwood, M.N. Wild, H.J. Opgenoorth. ESA Publications, vol. SP-1198 (ESTEC, Noordwijk, 1997), pp. 49–62

    Google Scholar 

  • N. Østgaard, R.R. Vondrak, J.W. Gjerloev, G. Germany, A relation between the energy deposition by electron precipitation and geomagnetic indices during substorms. J. Geophys. Res. 107(A9), 1246 (2002). doi:10.1029/2001JA002003

    Article  Google Scholar 

  • N. Partamies, L. Juusola, E. Tanskanen, K. Kauristie, Statistical properties of substorms during different storm and solar cycle phases. Ann. Geophys. 31(2), 349–358 (2013). doi:10.5194/angeo-31-349-2013

    Article  ADS  Google Scholar 

  • A. Pulkkinen, A. Klimas, D. Vassiliadis, V. Uritsky, Role of stochastic fluctuations in the magnetosphere-ionosphere system: a stochastic model for the AE index variations. J. Geophys. Res. 111, 10218 (2006). doi:10.1029/2006JA011661

    Article  Google Scholar 

  • A.D. Richmond, Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 47, 191–212 (1995)

    Article  Google Scholar 

  • A.J. Ridley, E.A. Kihn, Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area. Geophys. Res. Lett. 31, 07801 (2004). doi:10.1029/2003GL019113

    Article  ADS  Google Scholar 

  • P. Ritter, H. Lühr, S. Maus, A. Viljanen, High-latitude ionospheric currents during very quiet times: their characteristics and predictability. Ann. Geophys. 22, 2001–2014 (2004)

    Article  ADS  Google Scholar 

  • G. Rostoker, T.D. Phan, Variation of auroral electrojet spatial location as a function of the level of magnetospheric activity. J. Geophys. Res. 91(A2), 1716–1722 (1986). doi:10.1029/JA091iA02p01716

    Article  ADS  Google Scholar 

  • G. Rostoker, J.C. Samson, F. Creutzberger, T.J. Hughes, D.R. McDiarmid, A.G. McNamara, A. Vallance-Jones, D.D. Wallis, CANOPUS—a ground-based instrument array for remote sensing the high latitude ionosphere during the ISTP/GGS program. Space Sci. Rev. 71, 743–760 (1995)

    Article  ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, R.H. Tyler, A. Kuvshinov, CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, /Orsted, SAC-C and observatory data. Geophys. J. Int. 200, 1596–1626 (2015). doi:10.1093/gji/ggu493

    Article  ADS  Google Scholar 

  • M. Siebert, J. Meyer, Geomagnetic activity indices, in The Upper Atmosphere, ed. by W. Dieminger, G.K. Hartman, R. Leitinger (Springer, Berlin, 1996), pp. 887–911

    Google Scholar 

  • R.W. Spiro, P.H. Reiff, L.J. Maher Jr., Precipitating electron energy flux and auroral zone conductances—an empirical model. J. Geophys. Res. 87(A10), 8215–8227 (1982). doi:10.1029/JA087iA10p08215

    Article  ADS  Google Scholar 

  • P. Stauning, A new index for the interplanetary merging field and geomagnetic activity: application of the unified polar cap indices. Space Weather 5, 09001 (2007). doi:10.1029/2007SW000311

    Article  ADS  Google Scholar 

  • P. Stauning, Comment on “The PC index: review of methods”, by McCreadie and Menvielle (2010). Ann. Geophys. 29, 1137–1146 (2011). doi:10.5194/angeo-29-1137-2011

    Article  ADS  Google Scholar 

  • P. Stauning, The polar cap index: a critical review of methods and a new approach. J. Geophys. Res. 118, 5021–5038 (2013). doi:10.1029/jgra.50462

    Article  Google Scholar 

  • M. Sugiura, IAGA resolution 2. IAGA Bull. 27, 123 (1969)

    Google Scholar 

  • M. Sugiura, T. Kamei, Equatorial \(D_{\mathit{st}}\)-index 1957–1986, in IAGA Bulletin No. 40, ed. by A. Berthelier, M. Menvielle (ISGI Publ. Off., Saint. Maur-des-Fosses, 1991)

    Google Scholar 

  • L. Svalgaard, Rederivation of Dst index, in AGU Fall Meeting Abstracts, vol. 1 (2005), p. 04

    Google Scholar 

  • L. Svalgaard, Geomagnetic semiannual variation is not overestimated and is not an artifact of systematic solar hemispheric asymmetry. Geophys. Res. Lett. 38(16) (2011). doi:10.1029/2011GL048616

  • L. Svalgaard, Correction of errors in scale values for magnetic elements for Helsinki. Ann. Geophys. 32(6), 633–641 (2014). doi:10.5194/angeo-32-633-2014

    Article  ADS  Google Scholar 

  • J. Takalo, J. Timonen, H. Koskinen, Correlation dimension and affinity of AE data and bicolored noise. Geophys. Res. Lett. 20(15), 1527–1530 (1993). doi:10.1029/93GL01596

    Article  ADS  Google Scholar 

  • E.I. Tanskanen, A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: years 1993–2003 examined. J. Geophys. Res. 114, 05204 (2009). doi:10.1029/2008JA013682

    Article  Google Scholar 

  • E.I. Tanskanen, A. Viljanen, T.I. Pulkkinen, R. Pirjola, L. Häkkinen, A. Pulkkinen, O. Amm, At substorm onset, 40 % of AL comes from underground. J. Geophys. Res. 106(A7), 13119 (2001). doi:10.1029/2000JA900135

    Article  ADS  Google Scholar 

  • M. Temerin, X. Li, The Dst index underestimates the solar cycle variation of geomagnetic activity. J. Geophys. Res. Space Phys. 120(7), 5603–5607 (2015)

    Article  ADS  Google Scholar 

  • E. Thébault, C.C. Finlay, P. Alken, C.D. Beggan, E. Canet, A. Chulliat, B. Langlais, V. Lesur, F.J. Lowes, C. Manoj, M. Rother, R. Schachtschneider, Evaluation of candidate geomagnetic field models for IGRF-12. Earth Planets Space 67, 112 (2015). doi:10.1186/s40623-015-0273-4

    Article  ADS  Google Scholar 

  • A.W.P. Thomson, V. Lesur, An improved geomagnetic data selection algorithm for global geomagnetic field modelling. Geophys. J. Int. 169(3), 951–963 (2007)

    Article  ADS  Google Scholar 

  • O.A. Troshichev, V.G. Andrezen, The relationship between interplanetary quantities and magnetic activity in the southern polar cap. Planet. Space Sci. 33(4), 415–419 (1985). doi:10.1016/0032-0633(85)90086-8

    Article  ADS  Google Scholar 

  • O.A. Troshichev, V.G. Andrezen, S. Vennerström, E. Friis-Christensen, Magnetic activity in the polar cap—a new index. Planet. Space Sci. 36(11), 1095–1102 (1988). doi:10.1016/0032-0633(88)90063-3

    Article  ADS  Google Scholar 

  • O. Troshichev, H. Hayakawa, A. Matsuoka, T. Mukai, K. Tsuruda, Cross polar cap diameter and voltage as a function of PC index and interplanetary quantities. J. Geophys. Res. 101(A6), 13429–13435 (1996). doi:10.1029/95JA03672

    Article  ADS  Google Scholar 

  • O.A. Troshichev, R.Y. Lukianova, V.O. Papitashvili, F.J. Rich, O. Rasmussen, Polar cap index (PC) as a proxy for ionospheric electric field in the near-pole region. Geophys. Res. Lett. 27(23), 3809–3812 (2000)

    Article  ADS  Google Scholar 

  • O. Troshichev, A. Janzhura, P. Stauning, Unified PCN and PCS indices: method of calculation, physical sense, and dependence on the imf azimuthal and northward components. J. Geophys. Res. 111, 05208 (2006). doi:10.1029/2005JA011402

    Article  Google Scholar 

  • B. Tsurutani, M. Sugiura, T. Iyemori, B.E. Goldstein, W.D. Gonzalez, S.I. Akasofu, E.J. Smith, The nonlinear response of AE to the IMF BS driver: a spectral break at 5 hours. Geophys. Res. Lett. 17(3), 279–282 (1990). doi:10.1029/GL017i003p00279

    Article  ADS  Google Scholar 

  • N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry, 2, parameterization and fitting to observations. J. Geophys. Res. 107(A8), 10–11017 (2002). doi:10.1029/2001JA000220

    Google Scholar 

  • S. Vennerstrøm, E. Friis-Christensen, O.A. Troshichev, V.G. Andresen, Comparison between the polar cap index, PC, and the auroral electrojet indices, AE, AL, and AU. J. Geophys. Res. 96, 101–113 (1991)

    Article  ADS  Google Scholar 

  • S. Vennerström, E. Friis-Christensen, O.A. Troshichev, V.G. Andrezen, Geomagnetic polar cap (PC) index 1975–1993, Rep. UAG-103 (World Data Center A, Boulder, Colorado, 1994)

  • A. Viljanen, L. Häkkinen, IMAGE magnetometer network, in Ground-Based Observations in Support of the Cluster Mission, ed. by M. Lockwood, M.N. Wild, H.J. Opgenoorth. ESA Publications, vol. SP-1198 (ESTEC, Noordwijk, 1997), pp. 111–117

    Google Scholar 

  • J.A. Wanliss, K.M. Showalter, High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. Space Phys. 111(A2), A02202 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the International Space Science Institute for inviting them to take part in the Workshop on “Earth’s Magnetic Field” held in Bern in May 2015. The \(\mathit{IE}\)-indices of Svalbard magnetometer stations were prepared and provided by Liisa Juusola, Max Van de Kamp (FMI) and Noora Partamies (UNIS). Discussions about the Kp procedure have been conducted with Lasse Häkkinen and Ari Viljanen (FMI). TGO/University of Tromsø is acknowledged for maintaining the Svalbard stations. The Referees are acknowledged particularly for their fascinating ideas on future work under the topic of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kauristie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kauristie, K., Morschhauser, A., Olsen, N. et al. On the Usage of Geomagnetic Indices for Data Selection in Internal Field Modelling. Space Sci Rev 206, 61–90 (2017). https://doi.org/10.1007/s11214-016-0301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0301-0

Keywords

Navigation