Skip to main content
Log in

Formation and Evolution of Protoatmospheres

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The origin and evolution of planetary protoatmospheres in relation to the protoplanetary disk is discussed. The initial atmospheres of planets can mainly be related via two formation scenarios. If a protoplanetary core accretes mass and grows inside the gas disk, it can capture H2, He and other gases from the disk. When the gas of the disk evaporates, the core that is surrounded by the H2/He gas envelope is exposed to the high X-ray and extreme ultraviolet flux and stellar wind of the young host star. This period can be considered as the onset of atmospheric escape. It is shown that lower mass bodies accrete less gas and depending on the host stars radiation environment can therefore lose the gaseous envelope after tens or hundreds of million years. Massive cores may never get rid of their captured hydrogen envelopes and remain as sub-Neptunes, Neptunes or gas giants for their whole life time. Terrestrial planets which may have lost the captured gas envelope by thermal atmospheric escape, or which accreted after the protoplanetary nebula vanished will produce catastrophically outgassed steam atmospheres during the magma ocean solidification process. These steam atmospheres consist mainly of water and CO2 that was incorporated into the protoplanet during its accretion. Planets, which are formed in the habitable zone, solidify within several million years. In such cases the outgassed steam atmospheres cool fast, which leads to the condensation of water and the formation of liquid oceans. On the other hand, magma oceans are sustained for longer if planets form inside a critical distance, even if they outgassed a larger initial amount of water. In such cases the steam atmosphere could remain 100 million years or for even longer. Hydrodynamic atmospheric escape will then desiccate these planets during the slow solidification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Y. Abe, Physical state of the very early Earth. Lithos 30(3), 223–235 (1993), the evolving Earth

    Article  ADS  Google Scholar 

  • Y. Abe, Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100(1-4), 27–39 (1997)

    Article  ADS  Google Scholar 

  • Y. Abe, Protoatmospheres and surface environment of protoplanets. Earth Moon Planets 108(1), 9–14 (2011)

    Article  ADS  Google Scholar 

  • Y. Abe, T. Matsui, The formation of an impact-generated H2O atmosphere and its implications for the early thermal history of the Earth. J. Geophys. Res., Solid Earth 90(S02), C545–C559 (1985)

    Article  ADS  Google Scholar 

  • Y. Abe, T. Matsui, Early evolution of the Earth: accretion, atmosphere formation, and thermal history. J. Geophys. Res., Solid Earth 91(B13), E291–E302 (1986)

    Article  ADS  Google Scholar 

  • Y. Abe, T. Matsui, Evolution of an impact-generated H2O-CO2 atmosphere and formation of a hot proto-ocean on Earth. J. Atmos. Sci. 45(21), 3081–3101 (1988)

    Article  ADS  Google Scholar 

  • Y. Abe, E. Ohtani, T. Okuchi, K. Righter, M. Drake, Water in the Early Earth (University of Arizona Press, Tucson, 2000), pp. 413–433

    Google Scholar 

  • Y. Abe, A. Abe-Ouchi, N.H. Sleep, K.J. Zahnle, Habitable zone limits for dry planets. Astrobiology 11, 443–460 (2011)

    Article  ADS  Google Scholar 

  • C.B. Agnor, R.M. Canup, H.F. Levison, On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219–237 (1999)

    Article  ADS  Google Scholar 

  • Y. Alibert, F. Carron, A. Fortier, S. Pfyffer, W. Benz, C. Mordasini, D. Swoboda, Theoretical models of planetary system formation: mass vs. semi-major axis. Astron. Astrophys. 558, A109 (2013)

    Article  ADS  Google Scholar 

  • C. Allègre, T. Staudacher, P. Sarda, Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet. Sci. Lett. 81(2–3), 127–150 (1987)

    Article  ADS  Google Scholar 

  • C.J. Allègre, G. Manhès, C. Göpel, The major differentiation of the Earth at 4.45 Ga. Earth Planet. Sci. Lett. 267, 386–398 (2008)

    Article  ADS  Google Scholar 

  • D. Andrault, N. Bolfan-Casanova, G.L. Nigro, M.A. Bouhifd, G. Garbarino, M. Mezouar, Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304(1–2), 251–259 (2011)

    Article  ADS  Google Scholar 

  • G.E. Ballester, D.K. Sing, F. Herbert, The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b. Nature 445(7127), 511–514 (2007)

    Article  ADS  Google Scholar 

  • I. Baraffe, F. Selsis, G. Chabrier, T.S. Barman, F. Allard, P.H. Hauschildt, H. Lammer, The effect of evaporation on the evolution of close-in giant planets. Astron. Astrophys. 419(2), L13–L16 (2004)

    Article  ADS  Google Scholar 

  • N.M. Batalha, Exploring exoplanet populations with NASA’s Kepler mission. Proc. Natl. Acad. Sci. USA 111, 12647–12654 (2014)

    Article  ADS  Google Scholar 

  • L. Ben-Jaffel, S. Hosseini, On the existence of energetic atoms in the upper atmosphere of exoplanet HD 209458b. Astrophys. J. 709(2), 1284 (2010)

    Article  ADS  Google Scholar 

  • K. Berlo, J. Gardner, J. Blundy, Timescales of magma degassing, in Timescales of Magmatic Processes: From Core to Atmosphere (Wiley-Blackwell, Hoboken, 2011), Ch. 11

    Google Scholar 

  • D.V. Bisikalo, P.V. Kaigorodov, D.E. Ionov, V.I. Shematovich, Types of gaseous envelopes of “hot Jupiter” exoplanets. Astron. Rep. 57(10), 715–725 (2013a)

    Article  ADS  Google Scholar 

  • D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, H. Lammer, L. Fossati, Three-dimensional gas dynamic simulation of the interaction between the exoplanet wasp-12b and its host star. Astrophys. J. 764(1), 19 (2013b)

    Article  ADS  Google Scholar 

  • P. Bodenheimer, J.J. Lissauer, Accretion and evolution of \({\sim}2.5~\mbox{M}_{\oplus}\) planets with voluminous H/He envelopes. Astrophys. J. 791, 103 (2014)

    Article  ADS  Google Scholar 

  • P. Bodenheimer, J.B. Pollack, Calculations of the accretion and evolution of giant planets. The effects of solid cores. Icarus 67, 391–408 (1986)

    Article  ADS  Google Scholar 

  • V. Bourrier, A. Lecavelier des Etangs, 3d model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions. Astron. Astrophys. 557, A124 (2013)

    Article  ADS  Google Scholar 

  • V. Bourrier, A. Lecavelier des Etangs, H. Dupuy, D. Ehrenreich, A. Vidal-Madjar, G. Hébrard, G.E. Ballester, J.-M. Désert, R. Ferlet, D.K. Sing, P.J. Wheatley, Atmospheric escape from HD 189733b observed in hi Lyman \(\alpha \): detailed analysis of HST/STIS September 2011 observations. Astron. Astrophys. 551, A63 (2013)

    Article  ADS  Google Scholar 

  • V. Bourrier, A. Lecavelier des Etangs, A. Vidal-Madjar, Modeling magnesium escape from HD 209458b atmosphere. Astron. Astrophys. 565, A105 (2014)

    Article  ADS  Google Scholar 

  • V. Bourrier, A. Lecavelier des Etangs, A. Vidal-Madjar, The Mg i line: a new probe of the atmospheres of evaporating exoplanets. Astron. Astrophys. 573, A11 (2015)

    Article  ADS  Google Scholar 

  • R. Brasser, The formation of Mars: building blocks and accretion time scale. Space Sci. Rev. 174, 11–25 (2013)

    Article  ADS  Google Scholar 

  • E.L. Brown, C.E. Lesher, North Atlantic magmatism controlled by temperature, mantle composition and buoyancy. Nat. Geosci. 7(11), 820–824 (2014)

    Article  ADS  Google Scholar 

  • H.P. Brown, A.J. Panshin, C.C. Forsaith, Textbook of Wood Technology (1949)

    Google Scholar 

  • A. Burgisser, M. Alletti, B. Scaillet, Simulating the behavior of volatiles belonging to the C–O–H–S system in silicate melts under magmatic conditions with the software d-compress. Comput. Geosci. 79, 1–14 (2015)

    Article  ADS  Google Scholar 

  • R.M. Canup, Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42, 441–475 (2004a)

    Article  ADS  Google Scholar 

  • R.M. Canup, Simulations of a late lunar-forming impact. Icarus 168(2), 433–456 (2004b)

    Article  ADS  Google Scholar 

  • M.R. Carroll, J.R. Holloway, Volatiles in Magmas. Reviews in Mineralogy, vol. 30 (Mineralogical Society of America, Washington, 1994)

    Google Scholar 

  • C. Cecchi-Pestellini, A. Ciaravella, G. Micela, T. Penz, The relative role of EUV radiation and x-rays in the heating of hydrogen-rich exoplanet atmospheres. Astron. Astrophys. 496(3), 863–868 (2009)

    Article  ADS  Google Scholar 

  • J. Chadney, M. Galand, Y. Unruh, T.T. Koskinen, J. Sanz-Forcada, XUV-driven mass loss from extrasolar giant planets orbiting active stars. Icarus 250, 357–367 (2015)

    Article  ADS  Google Scholar 

  • J.W. Chamberlain, Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11(8), 901–960 (1963)

    Article  ADS  Google Scholar 

  • E. Chassefière, Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res., Planets 101(E11), 26039–26056 (1996a)

    Article  ADS  Google Scholar 

  • E. Chassefière, Hydrodynamic escape of oxygen from primitive atmospheres: applications to the cases of Venus and Mars. Icarus 124, 537–552 (1996b)

    Article  ADS  Google Scholar 

  • E. Chassefière, F. Leblanc, B. Langlais, The combined effects of escape and magnetic field histories at Mars. Planet. Space Sci. 55(3), 343–357 (2007)

    Article  ADS  Google Scholar 

  • J.Y. Chaufray, R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, J.G. Luhmann, Mars solar wind interaction: formation of the martian corona and atmospheric loss to space. J. Geophys. Res., Planets 112(E9), E09009, e09009 (2007)

    Article  ADS  Google Scholar 

  • D.R. Ciardi, D.C. Fabrycky, E.B. Ford, T.N. Gautier III., S.B. Howell, J.J. Lissauer, D. Ragozzine, J.F. Rowe, On the relative sizes of planets within Kepler multiple-candidate systems. Astrophys. J. 763(1), 41 (2013)

    Article  ADS  Google Scholar 

  • W. Clarke, M. Beg, H. Craig, Excess 3He in the sea: evidence for terrestrial primodal helium. Earth Planet. Sci. Lett. 6(3), 213–220 (1969)

    Article  ADS  Google Scholar 

  • O. Cohen, A. Glocer, Ambipolar electric field, photoelectrons, and their role in atmospheric escape from hot Jupiters. Astrophys. J. Lett. 753(1), L4 (2012)

    Article  ADS  Google Scholar 

  • N.R. Council, The Limits of Organic Life in Planetary Systems (The National Academies Press, Washington, 2007)

    Google Scholar 

  • H. Craig, J. Lupton, Helium 3 and mantle volatiles in the ocean and the oceanic crust, in The Oceanic Lithosphere, vol. 7 (Wiley, New York, 1981)

    Google Scholar 

  • E. Crawford, Arrhenius’ 1896 model of the greenhouse effect in context, in Ambio, Stockholm, vol. 26 (1997), pp. 6–11

    Google Scholar 

  • N. Dauphas, A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011)

    Article  ADS  Google Scholar 

  • A. Davaille, A. Limare, Laboratory studies of mantle convection, in Treatise on Geophysics (Second Edition). Vol. “Mantle Dynamics”, ed. by G. Schubert, D. Bercovici (Elsevier, Amsterdam, 2015), pp. 73–144

    Chapter  Google Scholar 

  • T.A. Davis, P.J. Wheatley, Evidence for a lost population of close-in exoplanets. Mon. Not. R. Astron. Soc. 396(2), 1012–1017 (2009)

    Article  ADS  Google Scholar 

  • A. Lecavelier des Etangs, A diagram to determine the evaporation status of extrasolar planets. Astron. Astrophys. 461(3), 1185–1193 (2007)

    Article  ADS  Google Scholar 

  • A. Lecavelier des Etangs, A. Vidal-Madjar, J.C. McConnell, G. Hébrard, Atmospheric escape from hot Jupiters. Astron. Astrophys. 418(1), L1–L4 (2004)

    Article  ADS  Google Scholar 

  • K.-M. Dittkrist, C. Mordasini, H. Klahr, Y. Alibert, T. Henning, Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. Astron. Astrophys. 567, A121 (2014)

    Article  ADS  Google Scholar 

  • A. Ekenback, M. Holmstrom, M. Wurz et al., Energetic neutral atoms around HD 209458b: estimations of magnetospheric properties. Astrophys. J. 709, 670–679 (2010)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271(1), 181–191 (2008)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, Magma oceans in the inner solar system, in Annual Review of Earth and Planetary Sciences, ed. by R. Jeanloz. Annual Review of Earth and Planetary Sciences, vol. 40 (2012), pp. 113–139

    Google Scholar 

  • L. Elkins-Tanton, E. Parmentier, P. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003)

    Article  ADS  Google Scholar 

  • L. Elkins-Tanton, S. Zaranek, E. Parmentier, P. Hess, Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236(1-2), 1–12 (2005)

    Article  ADS  Google Scholar 

  • N.V. Erkaev, Y.N. Kulikov, H. Lammer, F. Selsis, D. Langmayr, G.F. Jaritz, H.K. Biernat, Roche lobe effects on the atmospheric loss from “hot Jupiters”. Astron. Astrophys. 472(1), 329–334 (2007)

    Article  ADS  Google Scholar 

  • N.V. Erkaev, H. Lammer, P. Odert, Y.N. Kulikov, K.G. Kislyakova et al., XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part i: Atmospheric expansion and thermal escape. Astrobiology 13(11), 1011–1029 (2013)

    Article  ADS  Google Scholar 

  • N.V. Erkaev, H. Lammer, L.T. Elkins-Tanton, A. Stökl, P. Odert, E. Marcq, E.A. Dorfi, K.G. Kislyakova, Y.N. Kulikov, M. Leitzinger, M. Güdel, Escape of the martian protoatmosphere and initial water inventory. Planet. Space Sci. 98, 106–119 (2014)

    Article  ADS  Google Scholar 

  • N.V. Erkaev, H. Lammer, P. Odert, Y.N. Kulikov, K.G. Kislyakova, Extreme hydrodynamic atmospheric loss near the critical thermal escape regime. Mon. Not. R. Astron. Soc. 448(2), 1916–1921 (2015)

    Article  ADS  Google Scholar 

  • F.P. Fanale, A case for catastrophic early degassing of the Earth. Chem. Geol. 8(2), 79–105 (1971)

    Article  Google Scholar 

  • G. Fiquet, A.L. Auzende, J. Siebert, A. Corgne, H. Bureau, H. Ozawa, G. Garbarino, Melting of peridotite to 140 gigapascals. Science 329(5998), 1516–1518 (2010)

    Article  ADS  Google Scholar 

  • D. Fisher, Trapped helium and argon and the formation of the atmosphere by degassing. Nature 256(5513), 113–114 (1975)

    Article  ADS  Google Scholar 

  • J.J. Fortney, N. Nettelmann, The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152, 423–447 (2010)

    Article  ADS  Google Scholar 

  • J. Fortney, C. Mordasini, N. Nettelmann, E.M.-R. Kempton, T.P. Greene, K. Zahnle, A framework for characterizing the atmospheres of low-mass low-density transiting planets. Astrophys. J. 775(1), 80 (2013)

    Article  ADS  Google Scholar 

  • J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204(2), 527–544 (2009)

    Article  ADS  Google Scholar 

  • J. Fox, M. Galand, R. Johnson, Energy deposition in planetary atmospheres by charged particles and solar photons. Space Sci. Rev. 139(1–4), 3–62 (2008)

    Article  ADS  Google Scholar 

  • N. Fujii, S. Uyeda, Conditions for a once molten Earth to cool. J. Phys. Earth 14(1), 15–26 (1966)

    Article  Google Scholar 

  • A. García Muñoz, Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55(10), 1426–1455 (2007)

    Article  ADS  Google Scholar 

  • H. Genda, Y. Abe, Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164, 149–162 (2003)

    Article  ADS  Google Scholar 

  • H. Genda, Y. Abe, Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005)

    Article  ADS  Google Scholar 

  • G.J. Golabek, T. Keller, T.V. Gerya, G. Zhu, P.J. Tackley, J.A.D. Connolly, Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus 215(1), 346–357 (2011)

    Article  ADS  Google Scholar 

  • C. Goldblatt, T.D. Robinson, K.J. Zahnle, D. Crisp, Low simulated radiation limit for runaway greenhouse climates. Nat. Geosci. 6, 661–667 (2013)

    Article  ADS  Google Scholar 

  • D. Grinspoon, Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993)

    Article  ADS  Google Scholar 

  • H. Gröller, V.I. Shematovich, H.I.M. Lichtenegger, H. Lammer, M. Pfleger, Y.N. Kulikov, W. Macher, U.V. Amerstorfer, H.K. Biernat, Venus’ atomic hot oxygen environment. J. Geophys. Res., Planets 115(E12), e12017 (2010)

    Article  ADS  Google Scholar 

  • H. Gröller, H. Lichtenegger, H. Lammer, V.I. Shematovich, Hot oxygen and carbon escape from the martian atmosphere. Planet. Space Sci. 98, 93–105 (2014)

    Article  ADS  Google Scholar 

  • S. Grossmann, D. Lohse, Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27–56 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Güdel, R. Dvorak, N. Erkaev, J. Kasting, M. Khodachenko, H. Lammer, E. Pilat-Lohinger, H. Rauer, I. Ribas, B.E. Wood, Astrophysical conditions for planetary habitability, in Protostars and Planets VI (2014), pp. 883–906

    Google Scholar 

  • B. Guillot, P. Sarda, The effect of compression on noble gas solubility in silicate melts and consequences for degassing at mid-ocean ridges. Geochim. Cosmochim. Acta 70(5), 1215–1230 (2006)

    Article  ADS  Google Scholar 

  • J.H. Guo, Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen. Astrophys. J. 733(2), 98 (2011)

    Article  ADS  Google Scholar 

  • J.H. Guo, Escaping particle fluxes in the atmospheres of close-in exoplanets. II. Reduced mass-loss rates and anisotropic winds. Astrophys. J. 766(2), 102 (2013)

    Article  ADS  Google Scholar 

  • K.E. Haisch Jr., E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001)

    Article  ADS  Google Scholar 

  • A.N. Halliday, Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004)

    Article  ADS  Google Scholar 

  • Y. Hamano, M. Ozima, Earth atmosphere evolution model based on Ar isotopic data, in Terrestrial Rare Gases (Japan Sci. Soc., Tokyo, 1978), pp. 155–171

    Chapter  Google Scholar 

  • K. Hamano, Y. Abe, H. Genda, Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497(7451), 607–610 (2013)

    Article  ADS  Google Scholar 

  • K. Hamano, H. Kawahara, Y. Abe, M. Onishi, G. Hashimoto, Lifetime and spectral evolution of a magma ocean with a steam atmosphere: its detectability by future direct imaging. Astrophys. J. 806(2), 216 (17 pp.) (2015)

    Article  ADS  Google Scholar 

  • C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981)

    Article  ADS  Google Scholar 

  • C. Hayashi, K. Nakazawa, H. Mizuno, Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43, 22–28 (1979)

    Article  ADS  Google Scholar 

  • C. Hayashi, K. Nakazawa, Y. Nakagawa, Formation of the solar system, in Protostars and Planets II, ed. by D.C. Black, M.S. Matthews (1985), pp. 1100–1153

    Google Scholar 

  • P. Hess, E. Parmentier, A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134(3-4), 501–514 (1995)

    Article  ADS  Google Scholar 

  • L.A. Hillenbrand, Observational constraints on dust disk lifetimes: implications for planet formation (2005). ArXiv Astrophysics e-prints

  • T. Höink, J. Schmalzl, U. Hansen, Formation of compositional structures by sedimentation in vigorous convection. Phys. Earth Planet. Inter. 153, 1–3 (2005)

    Article  Google Scholar 

  • M. Holmstrom, A. Ekenback, F. Selsis, T. Penz, H. Lammer, P. Wurz, Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b. Nature 451(7181), 970–972 (2008)

    Article  ADS  Google Scholar 

  • Y. Hori, M. Ikoma, Critical core masses for gas giant formation with grain-free envelopes. Astrophys. J. 714, 1343–1346 (2010)

    Article  ADS  Google Scholar 

  • Y. Hori, S. Ida, D.N.C. Lin, Characterization of sub/super-Earths orbiting cool stars: water content and hydrogen-rich atmospheres. Astrophysical Journal (2016, submitted)

  • O. Hubickyj, P. Bodenheimer, J.J. Lissauer, Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179, 415–431 (2005)

    Article  ADS  Google Scholar 

  • S. Ida, J. Makino, Scattering of planetesimals by a protoplanet—slowing down of runaway growth. Icarus 106, 210 (1993)

    Article  ADS  Google Scholar 

  • M. Ikoma, H. Genda, Constraints on the mass of a habitable planet with water of nebular origin. Astrophys. J. 648, 696–706 (2006)

    Article  ADS  Google Scholar 

  • M. Ikoma, H. Emori, K. Nakazawa, Formation of giant planets in dense nebulae: critical core mass revisited. Astrophys. J. 553, 999–1005 (2001)

    Article  ADS  Google Scholar 

  • M. Ikoma, Y. Hori, In situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. Astrophys. J. 753, 66 (2012)

    Article  ADS  Google Scholar 

  • M. Ikoma, K. Nakazawa, H. Emori, Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys. J. 537, 1013–1025 (2000)

    Article  ADS  Google Scholar 

  • A.P. Ingersoll, The runaway greenhouse: a history of water on Venus. J. Atmos. Sci. 26, 1191–1198 (1969)

    Article  ADS  Google Scholar 

  • D.E. Ionov, D.V. Bisikalo, V.I. Shematovich, B. Huber, Ionization fraction in the thermosphere of the exoplanet HD 209458b. Sol. Syst. Res. 48(2), 105–112 (2014)

    Article  ADS  Google Scholar 

  • W.H. Ip, On a hot oxygen corona of Mars. Icarus 76(1), 135–145 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • B.M. Jakosky, R.O. Pepin, R.E. Johnson, J.L. Fox, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111(2), 271–288 (1994)

    Article  ADS  Google Scholar 

  • N. Jendrzejewski, T. Trull, F. Pineau, M. Javoy, Carbon solubility in mid-ocean ridge basaltic melt at low pressures (250–1950 bar). Chem. Geol. 138(1-2), 81–92 (1997)

    Article  Google Scholar 

  • W.J. Jenkins, J.M. Edmond, J.B. Corliss, Excess 3He and 4He in Galapagos submarine hydrothermal waters. Nature 272(5649), 156–158 (1978)

    Article  ADS  Google Scholar 

  • S. Jin, C. Mordasini, V. Parmentier, R. van Boekel, T. Henning, J. Ji, Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation. Astrophys. J. 795(1), 65 (2014)

    Article  ADS  Google Scholar 

  • R.E. Johnson, M.R. Combi, J.L. Fox, W.H. Ip, F. Leblanc, M.A. McGrath, V.I. Shematovich, D.F. Strobel, J.H. Waite, Exospheres and atmospheric escape. Space Sci. Rev. 139(1–4), 355–397 (2008)

    Article  ADS  Google Scholar 

  • L. Kamp, F. Taylor, S. Calcutt, Structure of Venus’s atmosphere from modelling of night-side infrared spectra. Nature 336, 360–362 (1988)

    Article  ADS  Google Scholar 

  • J. Kasting, Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988)

    Article  ADS  Google Scholar 

  • J.F. Kasting, J.B. Pollack, Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53(3), 479–508 (1983)

    Article  ADS  Google Scholar 

  • J.F. Kasting, J.B. Pollack, T.P. Ackerman, Response of Earth’s atmosphere to increases in solar flux and implications for loss of water from Venus. Icarus 57, 335–355 (1984). doi:10.1016/0019-1035(84)90122-2

    Article  ADS  Google Scholar 

  • J.F. Kasting, D.P. Whitmire, R.T. Reynolds, Habitable zones around main sequence stars. Icarus 101, 108–128 (1993)

    Article  ADS  Google Scholar 

  • H. Kawahara, T. Hirano, K. Kurosaki, Y. Ito, M. Ikoma, Starspots-transit depth relation of the evaporating planet candidate KIC 12557548b. Astrophys. J. Lett. 776(1), L6 (2013)

    Article  ADS  Google Scholar 

  • M.L. Khodachenko, I. Alexeev, E. Belenkaya, H. Lammer, J.-M. Grießmeier, M. Leitzinger, P. Odert, T. Zaqarashvili, H.O. Rucker, Magnetospheres of “hot Jupiters”: the importance of magnetodisks in shaping a magnetospheric obstacle. Astrophys. J. 744(1), 70 (2012)

    Article  ADS  Google Scholar 

  • R. Kippenhahn, A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1994)

    MATH  Google Scholar 

  • K.G. Kislyakova, M. Holmström, H. Lammer, P. Odert, M.L. Khodachenko, Magnetic moment and plasma environment of HD 209458b as determined from \(\mbox{Ly}\alpha\) observations. Science 346(6212), 981–984 (2014a)

    Article  ADS  Google Scholar 

  • K.G. Kislyakova, C.P. Johnstone, P. Odert, N.V. Erkaev, H. Lammer, T. Lüftinger, M. Holmström, M.L. Khodachenko, M. Güdel, Stellar wind interaction and pick-up ion escape of the Kepler-11 “super-Earths”. Astron. Astrophys. 562, A116 (2014b)

    Article  ADS  Google Scholar 

  • T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q.-Z. Yin, A.N. Halliday, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    Article  ADS  Google Scholar 

  • E. Kokubo, H. Genda, Formation of terrestrial planets from protoplanets under a realistic accretion condition. Astrophys. J. Lett. 714, L21–L25 (2010)

    Article  ADS  Google Scholar 

  • E. Kokubo, S. Ida, On runaway growth of planetesimals. Icarus 123, 180–191 (1996)

    Article  ADS  Google Scholar 

  • E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998)

    Article  ADS  Google Scholar 

  • R.K. Kopparapu, R. Ramirez, J.F. Kasting, V. Eymet, T.D. Robinson, S. Mahadevan, R.C. Terrien, S. Domagal-Goldman, V. Meadows, R. Deshpande, Habitable zones around main-sequence stars: new estimates. Astrophys. J. Lett. 765, 131 (2013)

    Article  ADS  Google Scholar 

  • T.T. Koskinen, R.V. Yelle, P. Lavvas, N.K. Lewis, Characterizing the thermosphere of HD 209458b with UV transit observations. Astrophys. J. 723(1), 116 (2010)

    Article  ADS  Google Scholar 

  • T. Koskinen, R. Yelle, M. Harris, P. Lavvas, The escape of heavy atoms from the ionosphere of HD 209458b. II. Interpretation of the observations. Icarus 226(2), 1695–1708 (2013a)

    Article  ADS  Google Scholar 

  • T.T. Koskinen, M.J. Harris, R.V. Yelle, P. Lavvas, The escape of heavy atoms from the ionosphere of HD 209458b. I. A photochemical–dynamical model of the thermosphere. Icarus 226(2), 1678–1694 (2013b)

    Article  ADS  Google Scholar 

  • M.A. Krestyanikova, V.I. Shematovich, Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars. Sol. Syst. Res. 40(5), 384–392 (2006)

    Article  ADS  Google Scholar 

  • H. Kurokawa, T. Nakamoto, Mass-loss evolution of close-in exoplanets: evaporation of hot Jupiters and the effect on population. Astrophys. J. 783(1), 54 (2014)

    Article  ADS  Google Scholar 

  • K. Kurosaki, M. Ikoma, Y. Hori, Impact of photo-evaporative mass loss on masses and radii of water-rich sub/super-Earths. Astron. Astrophys. 562, A80 (2014)

    Article  ADS  Google Scholar 

  • M. Kurz, W. Jenkins, J. Schilling, S. Hart, Helium isotopic variations in the mantle beneath the central North Atlantic Ocean. Earth Planet. Sci. Lett. 58(1), 1–14 (1982)

    Article  ADS  Google Scholar 

  • T. La Tourette, G.J. Wasserburg, Mg diffusion in anorthite: implications for the formation of early solar planetisimals. Earth Planet. Sci. Lett. 158, 91–108 (1998)

    Article  ADS  Google Scholar 

  • S. Labrosse, C. Jaupart, Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett. 260(3–4), 465–481 (2007)

    Article  ADS  Google Scholar 

  • S. Labrosse, J.W. Hernlund, N. Coltice, A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450(7171), 866–869 (2007)

    Article  ADS  Google Scholar 

  • H. Lammer, S.J. Bauer, Nonthermal atmospheric escape from Mars and Titan. J. Geophys. Res. Space Phys. 96(A2), 1819–1825 (1991)

    Article  ADS  Google Scholar 

  • H. Lammer, F. Selsis, I. Ribas, E.F. Guinan, S.J. Bauer, W.W. Weiss, Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. Astrophys. J. Lett. 598(2), L121 (2003)

    Article  ADS  Google Scholar 

  • H. Lammer, P. Odert, M. Leitzinger, M.L. Khodachenko, M. Panchenko, Y.N. Kulikov, T.L. Zhang, H.I.M. Lichtenegger, N.V. Erkaev, G. Wuchterl, G. Micela, T. Penz, H.K. Biernat, J. Weingrill, M. Steller, H. Ottacher, J. Hasiba, A. Hanslmeier, Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? Astron. Astrophys. 506(1), 399–410 (2009)

    Article  ADS  Google Scholar 

  • H. Lammer, N.V. Erkaev, P. Odert, K.G. Kislyakova, M. Leitzinger, M.L. Khodachenko, Probing the blow-off criteria of hydrogen-rich ‘super-Earths’. Mon. Not. R. Astron. Soc. 430(2), 1247–1256 (2013)

    Article  ADS  Google Scholar 

  • H. Lammer, A. Stökl, N.V. Erkaev, E.A. Dorfi, P. Odert, M. Güdel, Y.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of sun-like stars. Mon. Not. R. Astron. Soc. 439(4), 3225–3238 (2014)

    Article  ADS  Google Scholar 

  • M.A. Lange, T.J. Ahrens, The evolution of an impact-generated atmosphere. Icarus 51(1), 96–120 (1982)

    Article  ADS  Google Scholar 

  • A.F. Lanza, Star-planet magnetic interaction and evaporation of planetary atmospheres. Astron. Astrophys. 557, A31 (2013)

    Article  ADS  Google Scholar 

  • M. Le Bars, A. Davaille, Whole layer convection in a heterogeneous planetary mantle. J. Geophys. Res., Solid Earth 109, B03403 (2004)

    ADS  Google Scholar 

  • T. Lebrun, H. Massol, E. Chassefiere, A. Davaille, E. Marcq, P. Sarda, F. Leblanc, G. Brandeis, Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res., Planets 118(6), 1155–1176 (2013)

    Article  ADS  Google Scholar 

  • J. Leconte, F. Forget, B. Charnay, R. Wordsworth, A. Pottier, Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268–271 (2013)

    Article  ADS  Google Scholar 

  • E.J. Lee, E. Chiang, C.W. Ormel, Make super-Earths, not Jupiters: accreting nebular gas onto solid cores at 0.1 AU and beyond. Astrophys. J. 797, 95 (2014)

    Article  ADS  Google Scholar 

  • A.M. Lejeune, P. Richet, Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J. Geophys. Res., Solid Earth 100, 4215–4229 (1995)

    Article  Google Scholar 

  • J.S. Lewis, R.G. Prinn, Planets and Their Atmospheres: Origin and Evolution, vol. 33 (Elsevier, Amsterdam, 1983)

    Google Scholar 

  • J. Li, C. Agee, Geochemistry of mantle-core differentiation at high pressure. Nature 381(6584), 686–689 (1996)

    Article  ADS  Google Scholar 

  • H.I.M. Lichtenegger, H. Gröller, H. Lammer, Y.N. Kulikov, V.I. Shematovich, On the elusive hot oxygen corona of Venus. Geophys. Res. Lett. 36(10), L10204 (2009)

    Article  ADS  Google Scholar 

  • J.L. Linsky, H. Yang, K. France, C.S. Froning, J.C. Green, J.T. Stocke, S.N. Osterman, Observations of mass loss from the transiting exoplanet HD 209458b. Astrophys. J. 717(2), 1291 (2010)

    Article  ADS  Google Scholar 

  • J.J. Lissauer, Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69, 249–265 (1987)

    Article  ADS  Google Scholar 

  • Y. Liu, Y. Zhang, H. Behrens, Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts. J. Volcanol. Geotherm. Res. 143(1–3), 219–235 (2005)

    Article  ADS  Google Scholar 

  • E.D. Lopez, J. Fortney, The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776(1), 2 (2013)

    Article  ADS  Google Scholar 

  • E.D. Lopez, J.J. Fortney, Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014)

    Article  ADS  Google Scholar 

  • E.D. Lopez, J. Fortney, N. Miller, How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond. Astrophys. J. 761(1), 59 (2012)

    Article  ADS  Google Scholar 

  • R. Luger, R. Barnes, E. Lopez, J. Fortney, B. Jackson, V. Meadows, Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15(1), 57–88 (2015)

    Article  ADS  Google Scholar 

  • J.G. Luhmann, R.E. Johnson, M.H.G. Zhang, Evolutionary impact of sputtering of the martian atmosphere by O+ pickup ions. Geophys. Res. Lett. 19(21), 2151–2154 (1992)

    Article  ADS  Google Scholar 

  • R.E. Lupu, K. Zahnle, M.S. Marley, L. Schaefer, B. Fegley, C. Morley, K. Cahoy, R. Freedman, J.J. Fortney, The atmospheres of earthlike planets after giant impact events. Astrophys. J. 784, 27 (2014)

    Article  ADS  Google Scholar 

  • G.J.F. MacDonald, Calculations on the thermal history of the Earth. J. Geophys. Res. 64(11), 1967–2000 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • W.V.R. Malkus, The heat transport and spectrum of thermal turbulence. Proc. R. Soc. A, Math. Phys. Eng. Sci. (1954). doi:10.1098/rspa.1954.0197

    MathSciNet  MATH  Google Scholar 

  • E. Marcq, A simple 1-D radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets. J. Geophys. Res., Planets 117, 1001 (2012)

    Article  ADS  Google Scholar 

  • G.W. Marcy, L. Weiss, E.A. Petigura, H. Isaacson, A.W. Howard, L.A. Buchhave, Occurrence and core-envelope structure of 1-4x Earth-size planets around sun-like stars. Proc. Natl. Acad. Sci. USA 111(35), 12655–12660 (2014)

    Article  ADS  Google Scholar 

  • M. Marov, V. Shematovich, D. Bisikalo, Non equilibrium aeronomic processes. Space Sci. Rev. 76(1–2), 1–204 (1996)

    ADS  Google Scholar 

  • D. Martin, R. Nokes, Crystal settling in a vigorously convecting magma chamber. Nature 332, 534–536 (1988)

    Article  ADS  Google Scholar 

  • T. Matsui, Y. Abe, Impact-induced atmospheres and oceans on Earth and Venus. Nature 322(6079), 526–528 (1986)

    Article  ADS  Google Scholar 

  • M. Maurice, N. Tosi, A.C. Plesa, D. Breuer, Evolution and consequences of magma ocean solidification, in Goldschmidt Abstracts. No. 2060 (2015)

    Google Scholar 

  • M.B. McElroy, Mars: an evolving atmosphere. Science 175(4020), 443–445 (1972)

    Article  ADS  Google Scholar 

  • E. Miller-Ricci, M.R. Meyer, S. Seager, L. Elkins-Tanton, On the emergent spectra of hot protoplanet collision afterglows. Astrophys. J. 704, 770–780 (2009)

    Article  ADS  Google Scholar 

  • H. Mizuno, K. Nakazawa, C. Hayashi, Instability of a gaseous envelope surrounding a planetary core and formation of giant planets. Prog. Theor. Phys. 60, 699–710 (1978)

    Article  ADS  Google Scholar 

  • H. Mizuno, K. Nakazawa, C. Hayashi, Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet. Sci. Lett. 50, 202–210 (1980)

    Article  ADS  Google Scholar 

  • J. Monteux, N. Coltice, F. Dubuffet, Y. Ricard, Thermo-mechanical adjustment after impacts during planetary growth. Geophys. Res. Lett. 34, L24201 (2007)

    Article  ADS  Google Scholar 

  • T. Montmerle, J.-C. Augereau, M. Chaussidon, M. Gounelle, B. Marty, A. Morbidelli, Solar system formation and early evolution: the first 100 million years. Earth Moon Planets 98(1–4), 39–95 (2006)

    Article  ADS  Google Scholar 

  • C. Mordasini, Grain opacity and the bulk composition of extrasolar planets. II. An analytical model for grain opacity in protoplanetary atmospheres. Astron. Astrophys. 572, A118 (2014)

    Article  ADS  Google Scholar 

  • C. Mordasini, Y. Alibert, C. Georgy, K.-M. Dittkrist, H. Klahr, T. Henning, Characterization of exoplanets from their formation. II. The planetary mass-radius relationship. Astron. Astrophys. 547, A112 (2012a)

    Article  ADS  Google Scholar 

  • C. Mordasini, Y. Alibert, H. Klahr, T. Henning, Characterization of exoplanets from their formation. I. Models of combined planet formation and evolution. Astron. Astrophys. 547, A111 (2012b)

    Article  ADS  Google Scholar 

  • M. Moreira, Noble gas constraints on the origin and evolution of Earth’s volatiles. Geochem. Perspect. 2, 229–403 (2013)

    Article  Google Scholar 

  • R. Morishima, J. Stadel, B. Moore, From planetesimals to terrestrial planets: \(N\)-body simulations including the effects of nebular gas and giant planets. Icarus 207, 517–535 (2010)

    Article  ADS  Google Scholar 

  • N. Movshovitz, M. Podolak, The opacity of grains in protoplanetary atmospheres. Icarus 194, 368–378 (2008)

    Article  ADS  Google Scholar 

  • N. Movshovitz, P. Bodenheimer, M. Podolak, J.J. Lissauer, Formation of Jupiter using opacities based on detailed grain physics. Icarus 209, 616–624 (2010)

    Article  ADS  Google Scholar 

  • R.A. Murray-Clay, E.I. Chiang, N. Murray, Atmospheric escape from hot Jupiters. Astrophys. J. 693(1), 23 (2009)

    Article  ADS  Google Scholar 

  • A. Nagy, T. Cravens, Hot oxygen atoms in the upper atmosphere of Venus and Mars. Geophys. Res. Lett. 15(5), 433–435 (1988)

    Article  ADS  Google Scholar 

  • S. Nakajima, Y.-Y. Hayashi, Y. Abe, A study on the ‘runaway greenhouse effect’ with a one-dimensional radiative-convective equilibrium model. J. Atmos. Sci. 49, 2256–2266 (1992)

    Article  ADS  Google Scholar 

  • F. Nimmo, T. Kleine, How rapidly did Mars accrete? Uncertainties in the Hf W timing of core formation. Icarus 191, 497–504 (2007)

    Article  ADS  Google Scholar 

  • R. Nomura, H. Ozawa, S. Tateno, K. Hirose, J. Hernlund, S. Muto, H. Ishii, N. Hiraoka, Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473(7346), 199–202 (2011)

    Article  ADS  Google Scholar 

  • D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006)

    Article  ADS  Google Scholar 

  • D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.M. Mandell, Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014)

    Article  ADS  Google Scholar 

  • S. Okuzumi, H. Tanaka, H. Kobayashi, K. Wada, Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophys. J. 752, 106 (2012)

    Article  ADS  Google Scholar 

  • H.C. O’Neill, H. Palme, Composition of the silicate Earth: implications for accretion of and core formation, in The Earth’s Mantle; Composition, Structure, and Evolution (Cambridge University Press, Cambridge, 1988), pp. 3–126

    Google Scholar 

  • E.J. Opik, S.F. Singer, Distribution of density in a planetary exosphere. II. Phys. Fluids 4, 221–233 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  • C.W. Ormel, An atmospheric structure equation for grain growth. Astrophys. J. Lett. 789, L18 (2014)

    Article  ADS  Google Scholar 

  • C.W. Ormel, R. Kuiper, J.-M. Shi, Hydrodynamics of embedded planets’ first atmospheres—I. A centrifugal growth barrier for 2D flows. Mon. Not. R. Astron. Soc. 446, 1026–1040 (2015a)

    Article  ADS  Google Scholar 

  • C.W. Ormel, J.-M. Shi, R. Kuiper, Hydrodynamics of embedded planets’ first atmospheres—II. A rapid recycling of atmospheric gas. Mon. Not. R. Astron. Soc. 447, 3512–3525 (2015b)

    Article  ADS  Google Scholar 

  • J.E. Owen, A. Jackson, Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425(4), 2931–2947 (2012)

    Article  ADS  Google Scholar 

  • J.E. Owen, Y. Wu, Kepler planets: a tale of evaporation. Astrophys. J. 775(2), 105 (2013)

    Article  ADS  Google Scholar 

  • J.E. Owen, B. Ercolano, C.J. Clarke, R.D. Alexander, Radiation-hydrodynamic models of X-ray and EUV photoevaporating protoplanetary discs. Mon. Not. R. Astron. Soc. 401(3), 1415–1428 (2010)

    Article  ADS  Google Scholar 

  • M. Ozima, Ar isotopes and Earth-atmosphere evolution models. Geochim. Cosmochim. Acta 39(8), 1127–1134 (1975)

    Article  ADS  Google Scholar 

  • M. Ozima, K. Kudo, Excess argon in submarine basalts and an Earth-atmosphere evolution model. Nature 239(89), 23–24 (1972)

    ADS  Google Scholar 

  • V. Pan, J.R. Holloway, R. Hervig, The pressure and temperature-dependence of carbon-dioxide solubility in tholeiitic basalt melts. Geochim. Cosmochim. Acta 55(6), 1587–1595 (1991)

    Article  ADS  Google Scholar 

  • P. Papale, Modeling of the solubility of a two-component H2O+CO2 fluid in silicate liquids. Am. Mineral. 84(4), 447–492 (1999)

    Article  ADS  Google Scholar 

  • E.N. Parker, Interplanetary Dynamical Processes (Interscience, New York, 1963)

    MATH  Google Scholar 

  • E.N. Parker, Dynamical properties of stellar coronas and stellar winds. I. Integration of the momentum equation. Astrophys. J. 139, 72–122 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • T. Penz, N.V. Erkaev, Y.N. Kulikov, D. Langmayr, H. Lammer, G. Micela, C. Cecchi-Pestellini, H.K. Biernat, F. Selsis, P. Barge, M. Deleuil, A. Léger, Mass loss from “hot Jupiters”—implications for CoRoT discoveries, part ii: Long time thermal atmospheric evaporation modeling. Planet. Space Sci. 56(9), 1260–1272 (2008)

    Article  ADS  Google Scholar 

  • F. Perri, A.G.W. Cameron, Hydrodynamic instability of the solar nebula in the presence of a planetary core. Icarus 22, 416–425 (1974)

    Article  ADS  Google Scholar 

  • S. Pfyffer, Y. Alibert, W. Benz, D. Swoboda, Theoretical models of planetary system formation. II. Post-formation evolution (2015). ArXiv e-prints

  • A.C. Plesa, N. Tosi, D. Breuer, Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars? Earth Planet. Sci. Lett. 403, 225–235 (2014)

    Article  ADS  Google Scholar 

  • M. Podolak, The contribution of small grains to the opacity of protoplanetary atmospheres. Icarus 165, 428–437 (2003)

    Article  ADS  Google Scholar 

  • J.B. Pollack, Formation of giant planets and their satellite-ring systems, in Protostars and Planets II (University of Arizona Press, Tucson, 1985)

    Google Scholar 

  • J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996)

    Article  ADS  Google Scholar 

  • C. Priestley, Turbulent Transfer in the Lower Atmosphere (University of Chicago Press, Chicago, 1959)

    Google Scholar 

  • R. Rafikov, Microwave emission from spinning dust in circumstellar disks. Astrophys. J. 646, 288–296 (2006)

    Article  ADS  Google Scholar 

  • R.M. Ramirez, L. Kaltenegger, The habitable zones of pre-main-sequence stars. Astrophys. J. Lett. 797(2), L25–L33 (2014)

    Article  ADS  Google Scholar 

  • S.N. Raymond, T. Quinn, J.I. Lunine, High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006)

    Article  ADS  Google Scholar 

  • S.N. Raymond, E. Kokubo, A. Morbidelli, R. Morishima, K.J. Walsh, Terrestrial planet formation at home and abroad, in Protostars and Planets VI (2014), pp. 595–618

    Google Scholar 

  • R.T. Reynolds, P.E. Fricker, A.L. Summers, Effects of melting upon thermal models of the Earth. J. Geophys. Res. 71(2), 573–582 (1966)

    Article  ADS  Google Scholar 

  • K. Righter, M. Drake, Metal/silicate equilibrium in the early Earth—new constraints from the volatile moderately siderophile elements Ga, Cu, P, and Sn. Geochim. Cosmochim. Acta 64(20), 3581–3597 (2000)

    Article  ADS  Google Scholar 

  • L. Rogers, Most 1.6 Earth-radius planets are not rocky. Astrophys. J. 801(1), 41 (2015)

    Article  ADS  Google Scholar 

  • W.W. Rubey, Geologic history of sea water an attempt to state the problem. Geol. Soc. Am. Bull. 62(9), 1111–1148 (1951)

    Article  ADS  Google Scholar 

  • V. Safronov, The heating of the Earth during its formation. Icarus 33, 3–12 (1978)

    Article  ADS  Google Scholar 

  • J. Sanz-Forcada, I. Ribas, G. Micela, A.M.T. Pollock, D. García-Álvarez, E. Solano, C. Eiroa, A scenario of planet erosion by coronal radiation. Astron. Astrophys. 511, L8 (2010)

    Article  ADS  Google Scholar 

  • P. Sarda, B. Guillot, Breaking of Henry’s law for noble gas and CO2 solubility in silicate melt under pressure. Nature 436(7047), 95–98 (2005)

    Article  ADS  Google Scholar 

  • P. Sarda, T. Staudacher, C.J. Allègre, 40Ar/36Ar in MORB glasses: constraints on atmosphere and mantle evolution. Earth Planet. Sci. Lett. 72(4), 357–375 (1985)

    Article  ADS  Google Scholar 

  • P. Sarda, T. Staudacher, C.J. Allègre, Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91(1–2), 73–88 (1988)

    Article  ADS  Google Scholar 

  • S. Sasaki, K. Nakazawa, Metal-silicate fractionation in the growing Earth: energy source for the terrestrial magma ocean. J. Geophys. Res., Solid Earth 91(B9), 9231–9238 (1986)

    Article  Google Scholar 

  • E.M. Schneiter, P. Velázquez, A. Esquivel, A.C. Raga, X. Blanco-Cano, Three-dimensional hydrodynamical simulation of the exoplanet HD 209458b. Astrophys. J. Lett. 671(1), L57 (2007)

    Article  ADS  Google Scholar 

  • D. Semenov, T. Henning, C. Helling, M. Ilgner, E. Sedlmayr, Rosseland and Planck mean opacities for protoplanetary discs. Astron. Astrophys. 410, 611–621 (2003)

    Article  ADS  Google Scholar 

  • I.F. Shaikhislamov, M.L. Khodachenko, Y.L. Sasunov, H. Lammer, K.G. Kislyakova, N.V. Erkaev, Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material. Astrophys. J. 795(2), 132 (2014)

    Article  ADS  Google Scholar 

  • H.R. Shaw, Viscosities of magmatic silicate liquids: an empirical method of prediction. Am. J. Sci. 272, 870–893 (1972)

    Article  ADS  Google Scholar 

  • V.I. Shematovich, Stochastic models of hot planetary and satellite coronas. Sol. Syst. Res. 38(1), 28–38 (2004)

    Article  ADS  Google Scholar 

  • V.I. Shematovich, Suprathermal hydrogen produced by the dissociation of molecular hydrogen in the extended atmosphere of exoplanet HD 209458b. Sol. Syst. Res. 44(2), 96–103 (2010)

    Article  ADS  Google Scholar 

  • V.I. Shematovich, D.V. Bisikalo, J.C. Gérard, C. Cox, S.W. Bougher, F. Leblanc, Monte Carlo model of electron transport for the calculation of Mars dayglow emissions. J. Geophys. Res., Planets 113(E2), E02011 (2008)

    Article  ADS  Google Scholar 

  • V.I. Shematovich, D.E. Ionov, H. Lammer, Heating efficiency in hydrogen-dominated upper atmospheres. Astron. Astrophys. 571, A94 (2014)

    Article  ADS  Google Scholar 

  • E.D. Siggia, High Rayleigh number convection. Annu. Rev. Fluid Mech. 26(1), 137–168 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Smith, A.T. Anderson, R. Newton, E. Olsen et al., Petrologic history of the Moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks, in Proc. Apollo 11 Lunar Sci. Conf., vol. 1, Houston, TX, Jan. 5–8 (Pergamon, New York, 1970), pp. 897–925

    Google Scholar 

  • V.S. Solomatov, Fluid dynamics of a terrestrial magma ocean, in Origin of the Earth and Moon (2000), pp. 323–338

    Google Scholar 

  • V. Solomatov, Magma oceans and primordial mantle differentiation, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 91–119

    Chapter  Google Scholar 

  • V. Solomatov, Magma oceans and primordial mantle differentiation, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2009), pp. 91–119

    Google Scholar 

  • V. Solomatov, Magma oceans and primordial mantle differentiation—magma oceans and primordial mantle differentiation, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2015), 81–100

    Chapter  Google Scholar 

  • V.S. Solomatov, D.J. Stevenson, Suspension in convective layers and style of differentiation of a terrestrial magma ocean. J. Geophys. Res., Planets 98(E3), 5375–5390 (1993a)

    Article  ADS  Google Scholar 

  • V.S. Solomatov, D.J. Stevenson, Kinetics of crystal growth in a terrestrial magma ocean. J. Geophys. Res., Planets 98(E3), 5407–5418 (1993b)

    Article  ADS  Google Scholar 

  • T. Staudacher, C.J. Allègre, Terrestrial xenology. Earth Planet. Sci. Lett. 60(3), 389–406 (1982)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Formation of the giant planets. Planet. Space Sci. 30, 755–764 (1982)

    Article  ADS  Google Scholar 

  • A. Stökl, E. Dorfi, H. Lammer, Hydrodynamic simulations of captured protoatmospheres around Earth-like planets. Astron. Astrophys. 576, A87 (2015)

    Article  ADS  Google Scholar 

  • J.M. Stone, D. Proga, Anisotropic winds from close-in extrasolar planets. Astrophys. J. 694(1), 205 (2009)

    Article  ADS  Google Scholar 

  • J. Suckale, J.A. Sethian, J-d. Yu, L.T. Elkins-Tanton, Crystals stirred up: 1. Direct numerical simulations of crystal settling in nondilute magmatic suspensions. J. Geophys. Res., Planets 117, E08004 (2012)

    ADS  Google Scholar 

  • H.E. Suess, Die häufigkeit der edelgase auf der erde und im kosmos. J. Geol. 57, 600–607 (1949)

    Article  ADS  Google Scholar 

  • H. Tanaka, S. Ida, Growth of a migrating protoplanet. Icarus 139, 350–366 (1999)

    Article  ADS  Google Scholar 

  • Y.A. Tanaka, T.K. Suzuki, S. Inutsuka, Atmospheric escape by magnetically driven wind from gaseous planets. Astrophys. J. 792(1), 18 (2014)

    Article  ADS  Google Scholar 

  • G. Taylor, M. Norman, Evidence for Magma Oceans on Asteroids, the Moon, and Earth (Lunar Planet. Inst., Houston, 1992), pp. 58–65

    Google Scholar 

  • E. Thommes, M. Nagasawa, D.N.C. Lin, Dynamical shake-up of planetary systems. II. \(N\)-Body simulations of solar system terrestrial planet formation induced by secular resonance sweeping. Astrophys. J. 676, 728–739 (2008)

    Article  ADS  Google Scholar 

  • F. Tian, Conservation of total escape from hydrodynamic planetary atmospheres. Earth Planet. Sci. Lett. 379, 104–107 (2013)

    Article  ADS  Google Scholar 

  • F. Tian, History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs. Earth Planet. Sci. Lett. 432, 126–132 (2015)

    Article  ADS  Google Scholar 

  • F. Tian, S. Ida, Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8(3), 177–180 (2015)

    Article  ADS  Google Scholar 

  • F. Tian, O.B. Toon, A.A. Pavlov, H. De Sterck, A hydrogen-rich early Earth atmosphere. Science 308(5724), 1014–1017 (2005a)

    Article  ADS  Google Scholar 

  • F. Tian, O.B. Toon, A.A. Pavlov, H. De Sterck, Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. Astrophys. J. 621(2), 1049 (2005b)

    Article  ADS  Google Scholar 

  • F. Tian, J.F. Kasting, H.-L. Liu, R.G. Roble, Hydrodynamic planetary thermosphere model: 1. Response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res., Planets 113(E5), E05008 (2008)

    ADS  Google Scholar 

  • G. Tinetti et al., EChO. Exoplanet characterisation observatory. Exp. Astron. 34(2), 311–353 (2012)

    Article  ADS  Google Scholar 

  • W. Tonks, H. Melosh, The physics of crystal settling and suspension in a turbulent magma ocean, in Origin of the Earth (Oxford University Press, London, 1990), pp. 151–174

    Google Scholar 

  • W.B. Tonks, H.J. Melosh, Magma ocean formation due to giant impacts. J. Geophys. Res., Planets 98(E3), 5319–5333 (1993)

    Article  ADS  Google Scholar 

  • N. Tosi, A.C. Plesa, D. Breuer, Overturn and evolution of a crystallized magma ocean: a numerical parameter study for Mars. J. Geophys. Res., Planets 118(7), 1512–1528 (2013)

    Article  ADS  Google Scholar 

  • M. Touboul, T. Kleine, B. Bourdon, H. Palme, R. Wieler, Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007)

    Article  ADS  Google Scholar 

  • G.B. Trammell, P. Arras, Z.-Y. Li, Hot Jupiter magnetospheres. Astrophys. J. 728(2), 152 (2011)

    Article  ADS  Google Scholar 

  • K.K. Turekian, S.P. Clark Jr., The non-homogeneous accumulation model for terrestrial planet formation and the consequences for the atmosphere of Venus. J. Atmos. Sci. 32(6), 1257–1261 (1975)

    Article  ADS  Google Scholar 

  • H. Urey, The cosmic abundances of potassium, uranium and thorium and the heat balances of the Earth, the Moon and Mars. Proc. Natl. Acad. Sci. USA 41, 127–144 (1955)

    Article  ADS  Google Scholar 

  • F. Valsecchi, F.A. Rasio, J.H. Steffen, From hot Jupiters to super-Earths via Roche lobe overflow. Astrophys. J. Lett. 793(1), L3 (2014)

    Article  ADS  Google Scholar 

  • A. Vidal-Madjar, A. Lecavelier des Etangs, J.M. Desert, G.E. Ballester, R. Ferlet, G. Hebrard, M. Mayor, An extended upper atmosphere around the extrasolar planet HD 209458b. Nature 422(6928), 143–146 (2003)

    Article  ADS  Google Scholar 

  • A. Vidal-Madjar, J.M. Désert, A. Lecavelier des Etangs, G. Hébrard, G.E. Ballester, D. Ehrenreich, R. Ferlet, J.C. McConnell, M. Mayor, C.D. Parkinson, Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. Astrophys. J. Lett. 604(1), L69 (2004)

    Article  ADS  Google Scholar 

  • A. Vidal-Madjar, C.M. Huitson, V. Bourrier, J.-M. Désert, G. Ballester, A. Lecavelier des Etangs, D.K. Sing, D. Ehrenreich, R. Ferlet, G. Hébrard, J.C. McConnell, Magnesium in the atmosphere of the planet HD 209458b: observations of the thermosphere-exosphere transition region. Astron. Astrophys. 560, A54 (2013)

    Article  ADS  Google Scholar 

  • C. Villarreal D’Angelo, M. Schneiter, A. Costa, P. Velázquez, A. Raga, A. Esquivel, On the sensitivity of extrasolar mass-loss rate ranges: HD 209458b a case study. Mon. Not. R. Astron. Soc. 438(2), 1654–1662 (2014)

    Article  ADS  Google Scholar 

  • A. Volkov, R.E. Johnson, Thermal escape in the hydrodynamic regime: reconsideration of Parker’s isentropic theory based on results of kinetic simulations. Astrophys. J. 765(2), 90 (2013)

    Article  ADS  Google Scholar 

  • A. Volkov, R.E. Johnson, O.J. Tucker, J.T. Erwin, Thermally driven atmospheric escape: transition from hydrodynamic to jeans escape. Astrophys. J. Lett. 729(2), L24 (2011a)

    Article  ADS  Google Scholar 

  • A.N. Volkov, O.J. Tucker, J.T. Erwin, R.E. Johnson, Kinetic simulations of thermal escape from a single component atmosphere. Phys. Fluids 23(6), 066601 (2011b)

    Article  ADS  Google Scholar 

  • A.J. Watson, T.M. Donahue, J.C. Walker, The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48(2), 150–166 (1981)

    Article  ADS  Google Scholar 

  • R. Wayne, Chemistry of Atmospheres (Oxford University Press, London, 1991) 312 pp.

    Google Scholar 

  • G.W. Wetherill, Comparison of analytical and physical modeling of planetesimal accumulation. Icarus 88, 336–354 (1990)

    Article  ADS  Google Scholar 

  • G.W. Wetherill, G.R. Stewart, Accumulation of a swarm of small planetesimals. Icarus 77, 330–357 (1989)

    Article  ADS  Google Scholar 

  • F. Witham, J. Blundy, S.C. Kohn, P. Lesne, J. Dixon, S.V. Churakov, R. Botcharnikov, SolEx: a model for mixed COHSCl-volatile solubilities and exsolved gas compositions in basalt. Comput. Geosci. 45, 87–97 (2012)

    Article  ADS  Google Scholar 

  • J. Wood, J.S. Dickey Jr., U.B. Marvin, B.N. Powell, Lunar anorthosites and a geophysical model of the Moon, in Proceedings of the Apollo 11 Lunar Science Conference (Pergamon, New York, 1970), pp. 965–988

    Google Scholar 

  • B. Wood, M. Walter, J. Wade, Accretion of the Earth and segregation of its core. Nature 441(7095), 825–833 (2006)

    Article  ADS  Google Scholar 

  • Y. Wu, Y. Lithwick, Density and eccentricity of Kepler planets. Astrophys. J. 772(1), 74 (2013)

    Article  ADS  Google Scholar 

  • G. Wuchterl, The critical mass for protoplanets revisited—massive envelopes through convection. Icarus 106, 323 (1993)

    Article  ADS  Google Scholar 

  • G. Wuchterl, Giant planet formation. Earth Moon Planets 67(1–3), 51–65 (1994)

    Article  ADS  Google Scholar 

  • G. Wuchterl, Planet masses and radii from physical principles, in Proceedings of the International Astronomical Union 6 (Symposium S276) (2010), pp. 76–81

    Google Scholar 

  • J. Yang, G. Boué, D.C. Fabrycky, D.S. Abbot, Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. Lett. 787, L2 (2014)

    Article  ADS  Google Scholar 

  • R.V. Yelle, Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170(1), 167–179 (2004)

    Article  ADS  Google Scholar 

  • R. Yelle, H. Lammer, W.H. Ip, Aeronomy of extra-solar giant planets. Space Sci. Rev. 139, 437–451 (2008)

    Article  ADS  Google Scholar 

  • T. Yoshino, M. Walter, T. Katsura, Core formation in planetesimals triggered by permeable flow. Nature 422(6928), 154–157 (2003)

    Article  ADS  Google Scholar 

  • K. Zahnle, J. Kasting, J. Pollack, Evolution of a steam atmospheres during Earth’s accretion. Icarus 74(1), 62–97 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge both of the reviewers for their careful reading of our manuscript and valuable suggestions. H. Massol, P. Sarda, A. Davaille, E. Chassefière, E. Marcq and F. Leblanc are supported by the 2016 PNP program of INSU-CNRS. F. Tian is supported by the National Natural Science Foundation of China (41175039), the Startup Fund of the Ministry of Education of China, and the Tsinghua University Initiative Science Research Program (523001028). V. Shematovich acknowledges the support by the Russian Science Foundation Project No. 14-12-01048. H. Lammer acknowledges support by the FWF NFN project S11601-N16 ‘Pathways to Habitability: From Disks to Active Stars, Planets and Life’, and the related FWF NFN subproject, S11607-N16 ‘Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions’, as well as the FWF project P27256-N27 ‘Characterizing Stellar and Exoplanetary Environments via Modeling of Lyman-\(\alpha\) Transit Observations of Hot Jupiters’. K. Hamano and Y. Abe are supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (No. 23103003) and K. Hamano by a Grant-in-Aid for Young Scientists (B) from Japan Society for the Promotion of Science (JSPS) (No. 26800242). Y. Hori is supported by Grant-in-Aid for Scientific Research on Innovative Areas (No. 26103711) from MEXT. M. Ikoma is supported by Grants-in-Aid for Scientific Research on Innovative Areas (No. 23103005) and Scientific Research (C) (No. 25400224) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. Finally the authors thank the International Space Science Institute (ISSI) and ISSI-Beijing in Bern and Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Massol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massol, H., Hamano, K., Tian, F. et al. Formation and Evolution of Protoatmospheres. Space Sci Rev 205, 153–211 (2016). https://doi.org/10.1007/s11214-016-0280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0280-1

Keywords

Navigation