Skip to main content
Log in

Kinetic Structure of Current Sheets in the Earth Magnetotail

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In this paper we present a short review of kinetic models of the thin current sheet and corresponding Cluster observations in the Earth magnetotail. We concentrate mainly on manifestations of non-fluid ion kinetic effects. We discuss the different approaches to model description of the proton component and show that current sheets observed by Cluster contain population of particles with transient trajectories, which, in fact, are main carriers of the transverse current in the Earth magnetotail. We describe the influence of the electron temperature anisotropy on the current sheet structure. We demonstrate that the decoupling of proton and electron motions in thin current sheets results in appearance of the earthward electrostatic field, which redistributes currents due to the cross-field drift. This effect can describe small or negative proton currents often observed by Cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • W. Alpers, Steady state charge neutral models of the magnetopause. Astrophys. Space Sci. 5, 425–437 (1969)

    ADS  Google Scholar 

  • V. Angelopoulos et al., Characteristics of ion flow in the quiet state of the inner plasma sheet. Geophys. Res. Lett. 20, 1711–1714 (1993). doi:10.1029/93GL00847

    ADS  Google Scholar 

  • V. Angelopoulos et al., Tail reconnection triggering substorm onset. Science 321, 931–935 (2008). doi:10.1126/science.1160495

    ADS  Google Scholar 

  • A.V. Artemyev, A model of one-dimensional current sheet with parallel currents and normal component of magnetic field. Phys. Plasmas 18(2), 022104 (2011). doi:10.1063/1.3552141

    ADS  Google Scholar 

  • A.V. Artemyev et al., Comparison of multi-point measurements of current sheet structure and analytical models. Ann. Geophys. 26, 2749–2758 (2008a)

    ADS  Google Scholar 

  • A.V. Artemyev et al., Effect of the normal component of the magnetic field on the kink instability of the Earth’s magnetospheric current sheet. Plasma Phys. Rep. 34, 771–779 (2008b). doi:10.1134/S1063780X08090110

    ADS  Google Scholar 

  • A.V. Artemyev et al., Thin embedded current sheets: cluster observations of ion kinetic structure and analytical models. Ann. Geophys. 27, 4075–4087 (2009)

    ADS  Google Scholar 

  • A.V. Artemyev et al., Proton velocity distribution in thin current sheets: cluster observations and theory of transient trajectories. J. Geophys. Res. 115, 12255 (2010). doi:10.1029/2010JA015702

    Google Scholar 

  • A.V. Artemyev et al., Cluster statistics of thin current sheets in the earth magnetotail: specifics of the dawn flank, proton temperature profiles and electrostatic effects. J. Geophys. Res. 116, 0923 (2011a). doi:10.1029/2011JA016801

    Google Scholar 

  • A.V. Artemyev et al., Hot electrons as tracers of large-scale structure of magnetotail current sheets. Geophys. Res. Lett. 38, 14102 (2011b). doi:10.1029/2011GL047979

    ADS  Google Scholar 

  • A.V. Artemyev et al., Adiabatic electron heating in the magnetotail current sheet: cluster observations and analytical models. J. Geophys. Res. 117, 06219 (2012a). doi:10.1029/2012JA017513

    Google Scholar 

  • A.V. Artemyev et al., Drift modes of a quasi-two-dimensional current sheet. Plasma Phys. Rep. 38, 207–218 (2012b). doi:10.1134/S1063780X1202002X

    ADS  Google Scholar 

  • Y. Asano et al., Statistical study of thin current sheet evolution around substorm onset. J. Geophys. Res. 109, 5213 (2004). doi:10.1029/2004JA010413

    Google Scholar 

  • Y. Asano et al., How typical are atypical current sheets? Geophys. Res. Lett. 32, 3108 (2005). doi:10.1029/2004GL021834

    ADS  Google Scholar 

  • M. Ashour-Abdalla, J. Büchner, L.M. Zelenyi, The quasi-adiabatic ion distribution in the central plasma sheet and its boundary layer. J. Geophys. Res. 96, 1601–1609 (1991). doi:10.1029/90JA01921

    ADS  Google Scholar 

  • M. Ashour-Abdalla et al., Consequences of magnetotail ion dynamics. J. Geophys. Res. 99, 14891–14916 (1994). doi:10.1029/94JA00141

    ADS  Google Scholar 

  • D.N. Baker et al., Neutral line model of substorms: past results and present view. J. Geophys. Res. 101, 12975–13010 (1996). doi:10.1029/95JA03753

    ADS  Google Scholar 

  • B.M. Ball et al., Nonadiabatic orbit features in ion distribution functions of fast flow magnetotail configurations. J. Geophys. Res. 110, 4208 (2005). doi:10.1029/2004JA010676

    Google Scholar 

  • W. Baumjohann, Modes of convection in the magnetotail. Phys. Plasmas 9, 3665–3667 (2002)

    ADS  Google Scholar 

  • W. Baumjohann et al., Substorm dipolarization and recovery. J. Geophys. Res. 104, 24995–25000 (1999). doi:10.1029/1999JA900282

    ADS  Google Scholar 

  • W. Baumjohann et al., Dynamics of thin current sheets: cluster observations. Ann. Geophys. 25, 1365–1389 (2007)

    ADS  Google Scholar 

  • M.K. Bird, D.B. Beard, The self-consistent geomagnetic tail under static conditions. Planet. Space Sci. 20, 2057–2072 (1972). doi:10.1016/0032-0633(72)90062-1

    ADS  Google Scholar 

  • J. Birn, K. Schindler, M. Hesse, Thin electron current sheets and their relation to auroral potentials. J. Geophys. Res. 109, 2217 (2004). doi:10.1029/2003JA010303

    Google Scholar 

  • J. Birn, R. Sommer, K. Schindler, Open and closed magnetospheric tail configurations and their stability. Astrophys. Space Sci. 35, 389–402 (1975). doi:10.1007/BF00637005

    ADS  Google Scholar 

  • J. Büchner, L.M. Zelenyi, Deterministic chaos in the dynamics of charged particles near a magnetic field reversal. Phys. Lett. A 118, 395–399 (1986)

    ADS  Google Scholar 

  • J. Büchner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals. I—Basic theory of trapped motion. J. Geophys. Res. 94, 11821–11842 (1989). doi:10.1029/JA094iA09p11821

    ADS  Google Scholar 

  • G.R. Burkhart, J. Chen, Particle motion in x-dependent Harris-like magnetotail models. J. Geophys. Res. 98, 89–97 (1993). doi:10.1029/92JA01528

    ADS  Google Scholar 

  • G.R. Burkhart et al., A particle model for magnetotail neutral sheet equilibria. J. Geophys. Res. 97, 13799–13815 (1992a). doi:10.1029/92JA00495

    ADS  Google Scholar 

  • G.R. Burkhart et al., Ion tearing in a magnetotail configuration with an embedded thin current sheet. J. Geophys. Res. 97, 16749–16756 (1992b). doi:10.1029/92JA01523

    ADS  Google Scholar 

  • E. Camporeale, G. Lapenta, Model of bifurcated current sheets in the Earth’s magnetotail: equilibrium and stability. J. Geophys. Res. 110, 7206 (2005). doi:10.1029/2004JA010779

    Google Scholar 

  • J.R. Cary, A.J. Brizard, Hamiltonian theory of guiding-center motion. Rev. Mod. Phys. 81, 693–738 (2009). doi:10.1103/RevModPhys.81.693

    MathSciNet  ADS  MATH  Google Scholar 

  • P.J. Channell, Exact Vlasov-Maxwell equilibria with sheared magnetic fields. Phys. Fluids 19, 1541–1545 (1976). doi:10.1063/1.861357

    ADS  Google Scholar 

  • B. Coppi, G. Laval, R. Pellat, Dynamics of the geomagnetic tail. Phys. Rev. Lett. 16, 1207–1210 (1966)

    ADS  Google Scholar 

  • S.W.H. Cowley, The effect of pressure anisotropy on the equilibrium structure of magnetic current sheets. Planet. Space Sci. 26, 1037–1061 (1978)

    ADS  Google Scholar 

  • S.W.H. Cowley, R. Pellat, A note on adiabatic solutions of the one-dimensional current sheet problem. Planet. Space Sci. 27, 265–271 (1979)

    ADS  Google Scholar 

  • E.A. Davey et al., The orientation and current density of the magnetotail current sheet: a statistical study of the effect of geomagnetic conditions. J. Geophys. Res. 117, 7217 (2012). doi:10.1029/2012JA017715

    Google Scholar 

  • A. Divin et al., Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection. Phys. Plasmas 17(12), 122102 (2010). doi:10.1063/1.3521576

    ADS  Google Scholar 

  • J.W. Eastwood, Consistency of fields and particle motion in the ‘Speiser’ model of the current sheet. Planet. Space Sci. 20, 1555–1568 (1972)

    ADS  Google Scholar 

  • J.W. Eastwood, The warm current sheet model, and its implications on the temporal behavior of the geomagnetic tail. Planet. Space Sci. 22, 1641–1668 (1974)

    ADS  Google Scholar 

  • N.V. Erkaev, V.S. Semenov, H.K. Biernat, Magnetic double-gradient instability and flapping waves in a current sheet. Phys. Rev. Lett. 99(23), 235003 (2007). doi:10.1103/PhysRevLett.99.235003

    ADS  Google Scholar 

  • P. Francfort, R. Pellat, Magnetic merging in collisionless plasmas. Geophys. Res. Lett. 3, 433–436 (1976). doi:10.1029/GL003i008p00433

    ADS  Google Scholar 

  • A.G. Frank, Dynamics of current sheets underlying flare-type events in magnetized plasmas. Phys. Usp. 53, 941–947 (2010). doi:10.3367/UFNe.0180.201009h.0982

    ADS  Google Scholar 

  • A.G. Frank, N.P. Kyrie, S.N. Satunin, Plasma dynamics in laboratory-produced current sheets. Phys. Plasmas 18(11), 111209 (2011). doi:10.1063/1.3647576

    ADS  Google Scholar 

  • A.A. Galeev, Reconnection in the magnetotail. Space Sci. Rev. 23, 411–425 (1979)

    ADS  Google Scholar 

  • A.A. Galeev, L.M. Zelenyi, Tearing instability in plasma configurations. Sov. Phys. JETP 43, 1113 (1976)

    ADS  Google Scholar 

  • V. Génot et al., Bifurcated current sheet: model and cluster observations. Planet. Space Sci. 53, 229–235 (2005). doi:10.1016/j.pss.2004.09.048

    ADS  Google Scholar 

  • H. Grad, Boundary layer between a plasma and a magnetic field. Phys. Fluids 4, 1366–1375 (1961)

    MathSciNet  ADS  Google Scholar 

  • J.E.M. Hamilton, J.W. Eastwood, The effect of a normal magnetic field component on current sheet stability. Planet. Space Sci. 30, 293–305 (1982)

    ADS  Google Scholar 

  • E.G. Harris, On a plasma sheet separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115–123 (1962)

    MATH  Google Scholar 

  • M.G. Harrison, T. Neukirch, One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet. Phys. Rev. Lett. 102(13), 135003 (2009). doi:10.1103/PhysRevLett.102.135003

    ADS  Google Scholar 

  • T.W. Hill, Magnetic merging in a collisionless plasma. J. Geophys. Res. 80, 4689–4699 (1975)

    ADS  Google Scholar 

  • P.L. Israelevich, A.I. Ershkovich, R. Oran, Bifurcation of the tail current sheet in Jovian magnetosphere. Planet. Space Sci. 55, 2261–2266 (2007). doi:10.1016/j.pss.2007.05.006

    ADS  Google Scholar 

  • J.R. Kan, On the structure of the magnetotail current sheet. J. Geophys. Res. 78, 3773–3781 (1973). doi:10.1029/JA078i019p03773

    ADS  Google Scholar 

  • R.L. Kaufmann et al., Plasma sheet thickness and electric currents. J. Geophys. Res. 106, 6179–6194 (2001). doi:10.1029/2000JA000284

    ADS  Google Scholar 

  • D.B. Korovinskiy et al., Kink-like mode of a double gradient instability in a compressible plasma current sheet. Adv. Space Res. 48, 1531–1536 (2011)

    ADS  Google Scholar 

  • A.P. Kropotkin, V.I. Domrin, Theory of a thin one-dimensional current sheet in collisionless space plasma. J. Geophys. Res. 101, 19893–19902 (1996). doi:10.1029/96JA01140

    ADS  Google Scholar 

  • A.P. Kropotkin, H.V. Malova, M.I. Sitnov, Self-consistent structure of a thin anisotropic current sheet. J. Geophys. Res. 102, 22099–22106 (1997). doi:10.1029/97JA01316

    ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Mechanics, vol. 1 (Pergamon, Oxford, 1988)

    MATH  Google Scholar 

  • W.W. Liu, J. Liang, E.F. Donovan, Electrostatic field and ion temperature drop in thin current sheets: a theory. J. Geophys. Res. 115, 3211 (2010). doi:10.1029/2009JA014359

    Google Scholar 

  • A.T.Y. Lui, Potential plasma instabilities for substorm expansion onsets. Space Sci. Rev. 113, 127–206 (2004). doi:10.1023/B:SPAC.0000042942.00362.4e

    ADS  Google Scholar 

  • A.T.Y. Lui et al., Near-Earth substorm features from multiple satellite observations. J. Geophys. Res. 113, 7 (2008). doi:10.1029/2007JA012738

    Google Scholar 

  • S.M. Mahajan, Exact and almost exact solutions to the Vlasov-Maxwell system. Phys. Fluids, B Plasma Phys. 1, 43–54 (1989). doi:10.1063/1.859103

    MathSciNet  Google Scholar 

  • H.V. Malova et al., Thin current sheets in the presence of a guiding magnetic field in Earth’s magnetosphere. J. Geophys. Res. 117, 4212 (2012). doi:10.1029/2011JA017359

    Google Scholar 

  • D.J. McComas et al., The near-earth cross-tail current sheet—detailed ISEE 1 and 2 case studies. J. Geophys. Res. 91, 4287–4301 (1986). doi:10.1029/JA091iA04p04287

    ADS  Google Scholar 

  • O.V. Mingalev et al., Asymmetric configurations of a thin current sheet with a constant normal magnetic field component. Plasma Phys. Rep. 35, 76–83 (2009). doi:10.1134/S1063780X09010097

    ADS  Google Scholar 

  • O.V. Mingalev et al., Kinetic models of current sheets with a sheared magnetic field. Plasma Phys. Rep. 38, 300–314 (2012). doi:10.1134/S1063780X12030063

    ADS  Google Scholar 

  • A.I. Morozov, L.S. Solov’ev, A kinetic examination of some equilibrium plasma configurations. Sov. Phys. JETP 40, 1316–1324 (1961)

    Google Scholar 

  • F. Mottez, Exact nonlinear analytic Vlasov-Maxwell tangential equilibria with arbitrary density and temperature profiles. Phys. Plasmas 10, 2501–2508 (2003)

    MathSciNet  ADS  Google Scholar 

  • F. Mottez, The pressure tensor in tangential equilibria. Ann. Geophys. 22, 3033–3037 (2004). doi:10.5194/angeo-22-3033-2004

    ADS  Google Scholar 

  • R. Nakamura et al., Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field. J. Geophys. Res. 113, 7 (2008). doi:10.1029/2007JA012760

    Google Scholar 

  • R. Nakamura et al., Evolution of dipolarization in the near-Earth current sheet induced by earthward rapid flux transport. Ann. Geophys. 27, 1743–1754 (2009)

    ADS  Google Scholar 

  • R. Nakamura et al., Thin current sheets in the magnetotail observed by cluster. Space Sci. Rev. 122, 29–38 (2006). doi:10.1007/s11214-006-6219-1

    ADS  Google Scholar 

  • N.F. Ness, The Earth’s magnetic tail. J. Geophys. Res. 70, 2989–3005 (1965)

    ADS  Google Scholar 

  • R.B. Nicholson, Solution of the Vlasov equations for a plasma in an externally uniform magnetic field. Phys. Fluids 6, 1581–1586 (1963)

    ADS  Google Scholar 

  • E.V. Panov et al., Kinetic ballooning/interchange instability in a bent plasma sheet. J. Geophys. Res. 117, A06228 (2012b)

    ADS  Google Scholar 

  • E.V. Panov et al., Two types of tangential magnetopause current sheets: cluster observations and theory. J. Geophys. Res. 116, 12204 (2011). doi:10.1029/2011JA016860

    Google Scholar 

  • E.V. Panov et al., Observations of kinetic ballooning/interchange instability signatures in the magnetotail. Geophys. Res. Lett. 39, 8110 (2012a). doi:10.1029/2012GL051668

    ADS  Google Scholar 

  • G. Paschmann, S.J. Schwartz, ISSI Book on Analysis Methods for Multi-spacecraft Data. ESA Special Publication, vol. 449 (2000)

    Google Scholar 

  • R. Pellat, F.V. Coroniti, P.L. Pritchett, Does ion tearing exist? Geophys. Res. Lett. 18, 143–146 (1991). doi:10.1029/91GL00123

    ADS  Google Scholar 

  • A.A. Petrukovich, Origins of plasma sheet B y . J. Geophys. Res. 116, 7217 (2011). doi:10.1029/2010JA016386

    Google Scholar 

  • A.A. Petrukovich et al., Oscillatory magnetic flux tube slippage in the plasma sheet. Ann. Geophys. 24, 1695–1704 (2006)

    ADS  Google Scholar 

  • A.A. Petrukovich et al., Thinning and stretching of the plasma sheet. J. Geophys. Res. 112, 10213 (2007). doi:10.1029/2007JA012349

    Google Scholar 

  • A.A. Petrukovich et al., Tailward and Earthward flow onsets observed by cluster in a thin current sheet. J. Geophys. Res. 114, 9203 (2009). doi:10.1029/2009JA014064

    Google Scholar 

  • A.A. Petrukovich et al., Embedded current sheets in the Earth magnetotail. J. Geophys. Res. 116, 25 (2011). doi:10.1029/2010JA015749

    Google Scholar 

  • E. Priest, T. Forbes, Magnetic Reconnection (2000)

    MATH  Google Scholar 

  • P.L. Pritchett, F.V. Coroniti, Formation and stability of the self-consistent one-dimensional tail current sheet. J. Geophys. Res. 97, 16773–16787 (1992). doi:10.1029/92JA01550

    ADS  Google Scholar 

  • P.L. Pritchett, F.V. Coroniti, A kinetic ballooning/interchange instability in the magnetotail. J. Geophys. Res. 115, 06301 (2010). doi:10.1029/2009JA014752

    Google Scholar 

  • P.L. Pritchett, F.V. Coroniti, Plasma sheet disruption by interchange-generated flow intrusions. Geophys. Res. Lett. 381, 10102 (2011). doi:10.1029/2011GL047527

    Google Scholar 

  • F.J. Rich, V.M. Vasyliunas, R.A. Wolf, On the balance of stresses in the plasma sheet. J. Geophys. Res. 77, 4670–4676 (1972). doi:10.1029/JA077i025p04670

    ADS  Google Scholar 

  • Z.J. Rong et al., Statistical survey on the magnetic structure in magnetotail current sheets. J. Geophys. Res. 116, 9218 (2011). doi:10.1029/2011JA016489

    Google Scholar 

  • M. Roth, J. de Keyser, M.M. Kuznetsova, Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas. Space Sci. Rev. 76, 251–317 (1996)

    ADS  Google Scholar 

  • A. Runov et al., THEMIS observations of an Earthward-propagating dipolarization front. Geophys. Res. Lett. 36, 14106 (2009). doi:10.1029/2009GL038980

    ADS  Google Scholar 

  • A. Runov et al., Electric current and magnetic field geometry in flapping magnetotail current sheets. Ann. Geophys. 23, 1391–1403 (2005)

    ADS  Google Scholar 

  • A. Runov et al., Local structure of the magnetotail current sheet: 2001 cluster observations. Ann. Geophys. 24, 247–262 (2006)

    ADS  Google Scholar 

  • M.H. Saito et al., Spatial profile of magnetic field in the near-Earth plasma sheet prior to dipolarization by THEMIS: feature of minimum B. Geophys. Res. Lett. 37, 08106 (2010). doi:10.1029/2010GL042813

    ADS  Google Scholar 

  • K. Schindler, A theory of the substorm mechanism. J. Geophys. Res. 79, 2803–2810 (1974)

    ADS  Google Scholar 

  • K. Schindler, Physics of Space Plasma Activity (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  • K. Schindler, J. Birn, Models of two-dimensional embedded thin current sheets from Vlasov theory. J. Geophys. Res. 107, 1193 (2002). doi:10.1029/2001JA000304

    Google Scholar 

  • K. Schindler, M. Hesse, Conditions for the formation of nongyrotropic current sheets in slowly evolving plasmas. Phys. Plasmas 17, 082103 (2010). doi:10.1063/1.3464198

    ADS  Google Scholar 

  • K. Schindler, J. Birn, M. Hesse, Kinetic model of electric potentials in localized collisionless plasma structures under steady quasi-gyrotropic conditions. Phys. Plasmas 19, 082904 (2012). doi:10.1063/1.4747162

    ADS  Google Scholar 

  • V.A. Sergeev et al., A two satellite study of nightside flux transfer events in the plasma sheet. Planet. Space Sci. 40, 1551–1572 (1992). doi:10.1016/0032-0633(92)90052-P

    ADS  Google Scholar 

  • V.A. Sergeev, V. Angelopoulos, R. Nakamura, Recent advances in understanding substorm dynamics. Geophys. Res. Lett. 39, 5101 (2012). doi:10.1029/2012GL050859

    ADS  Google Scholar 

  • V.A. Sergeev et al., Structure of the tail plasma/current sheet at ∼11R E and its changes in the course of a substorm. J. Geophys. Res. 98, 17345–17366 (1993). doi:10.1029/93JA01151

    ADS  Google Scholar 

  • V.A. Sergeev et al., Survey of large-amplitude flapping motions in the midtail current sheet. Ann. Geophys. 24, 2015–2024 (2006)

    ADS  Google Scholar 

  • I.P. Shkarofsky, T.W. Johnston, M.P. Bachnynski, the Particle Kinetic of Plasmas (Addison-Wesley, Reading, 1966)

    Google Scholar 

  • M.I. Sitnov, K. Schindler, Tearing stability of a multiscale magnetotail current sheet. Geophys. Res. Lett. 37, 8102 (2010). doi:10.1029/2010GL042961

    ADS  Google Scholar 

  • M.I. Sitnov, P.N. Guzdar, M. Swisdak, A model of the bifurcated current sheet. Geophys. Res. Lett. 30, 45 (2003). doi:10.1029/2003GL017218

    Google Scholar 

  • M.I. Sitnov, P.N. Guzdar, M. Swisdak, Atypical current sheets and plasma bubbles: a self-consistent kinetic model. Geophys. Res. Lett. 341, 15101 (2007). doi:10.1029/2007GL029693

    ADS  Google Scholar 

  • M.I. Sitnov et al., Thin current sheet embedded within a thicker plasma sheet: self-consistent kinetic theory. J. Geophys. Res. 105, 13029–13044 (2000). doi:10.1029/1999JA000431

    ADS  Google Scholar 

  • M.I. Sitnov et al., A model of the bifurcated current sheet: 2. Flapping motions. Geophys. Res. Lett. 31, 9805 (2004a). doi:10.1029/2004GL019473

    ADS  Google Scholar 

  • M.I. Sitnov et al., Current-driven instabilities in forced current sheets. J. Geophys. Res. 109, 3205 (2004b). doi:10.1029/2003JA010123

    Google Scholar 

  • M.I. Sitnov et al., Structure and dynamics of a new class of thin current sheets. J. Geophys. Res. 111, 8204 (2006). doi:10.1029/2005JA011517

    Google Scholar 

  • B.U.Ö. Sonnerup, Adiabatic particle orbits in a magnetic null sheet. J. Geophys. Res. 76, 8211–8222 (1971). doi:10.1029/JA076i034p08211

    ADS  Google Scholar 

  • T.W. Speiser, Particle trajectories in model current sheets, 1, analytical solutions. J. Geophys. Res. 70, 4219–4226 (1965). doi:10.1029/JZ070i017p04219

    ADS  Google Scholar 

  • T.W. Speiser, N.F. Ness, The neutral sheet in the geomagnetic tail: its motion, equivalent currents, and field line connection through it. J. Geophys. Res. 72, 131 (1967)

    ADS  Google Scholar 

  • L.C. Steinhauer, M.P. McCarthy, E.C. Whipple, Multifluid model of a one-dimensional steady state magnetotail current sheet. J. Geophys. Res. 113, 4207 (2008). doi:10.1029/2007JA012578

    Google Scholar 

  • G.S. Stiles et al., Plasma sheet pressure anisotropies. J. Geophys. Res. 83, 3166–3172 (1978)

    ADS  Google Scholar 

  • S.I. Syrovatskii, Formation of current sheets in a plasma with a frozen-in strong magnetic field. Sov. JETP 33, 933 (1971)

    ADS  Google Scholar 

  • S.I. Syrovatskii, Pinch sheets and reconnection in astrophysics. Annu. Rev. Astron. Astrophys. 19, 163–229 (1981). doi:10.1146/annurev.aa.19.090181.001115

    ADS  Google Scholar 

  • D.L. Vainchtein et al., Quasiadiabatic description of nonlinear particle dynamics in typical magnetotail configurations. Nonlinear Process. Geophys. 12, 101–115 (2005)

    ADS  Google Scholar 

  • I.Y. Vasko et al., Kinetic models of 2D plane and axially symmetric current sheets. Phys. Plasma (2012, submitted)

  • E. Whipple, R. Puetter, M. Rosenberg, A two-dimensional, time-dependent, near-Earth magnetotail. Adv. Space Res. 11, 133–142 (1991). doi:10.1016/0273-1177(91)90024-E

    ADS  Google Scholar 

  • M. Yamada, R. Kulsrud, H. Ji, Magnetic reconnection. Rev. Mod. Phys. 82, 603–664 (2010). doi:10.1103/RevModPhys.82.603

    ADS  Google Scholar 

  • P.H. Yoon, A.T.Y. Lui, Model of ion- or electron-dominated current sheet. J. Geophys. Res. 109, 11213 (2004). doi:10.1029/2004JA010555

    Google Scholar 

  • P.H. Yoon, A.T.Y. Lui, A class of exact two-dimensional kinetic current sheet equilibria. J. Geophys. Res. 110, 1202 (2005). doi:10.1029/2003JA010308

    Google Scholar 

  • L.M. Zelenyi, A.V. Artemyev, A.A. Petrukovich, Earthward electric field in the magnetotail: cluster observations and theoretical estimates. Geophys. Res. Lett. 37, 6105 (2010). doi:10.1029/2009GL042099

    ADS  Google Scholar 

  • L.M. Zelenyi, D.V. Zogin, J. Büchner, Quasiadiabatic dynamics of charged particles in the tail of the magnetosphere. Cosm. Res. 28, 369–380 (1990)

    Google Scholar 

  • L.M. Zelenyi et al., Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models. Nonlinear Process. Geophys. 7, 127–139 (2000)

    ADS  Google Scholar 

  • L.M. Zelenyi et al., Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy. Nonlinear Process. Geophys. 11, 579–587 (2004)

    ADS  Google Scholar 

  • L.M. Zelenyi et al., “Matreshka” model of multilayered current sheet. Geophys. Res. Lett. 33, 5105 (2006). doi:10.1029/2005GL025117

    ADS  Google Scholar 

  • L.M. Zelenyi et al., Marginal stability of thin current sheets in the Earth’s magnetotail. J. Atmos. Sol.-Terr. Phys. 70, 325–333 (2008). doi:10.1016/j.jastp.2007.08.019

    ADS  Google Scholar 

  • L.M. Zelenyi et al., Low frequency eigenmodes of thin anisotropic current sheets and cluster observations. Ann. Geophys. 27, 861–868 (2009)

    ADS  Google Scholar 

  • L.M. Zelenyi et al., Metastability of current sheets. Phys. Usp. 53, 933–941 (2010). doi:10.3367/UFNe.0180.201009g.0973

    ADS  Google Scholar 

  • L.M. Zelenyi et al., Thin current sheets in collisionless plasma: equilibrium structure, plasma instabilities, and particle acceleration. Plasma Phys. Rep. 37, 118–160 (2011). doi:10.1134/S1063780X1102005X

    ADS  Google Scholar 

  • X. Zhou et al., Thin current sheet in the substorm late growth phase: modeling of THEMIS observations. J. Geophys. Res. 114, 3223 (2009). doi:10.1029/2008JA013777

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to A. Petrukovich for fruitful discussions, and to D. Vainshtein for valuable comments and suggestions. The work was supported by RFBR (Nos. 10-02-9311, 12-02-91158), by grants of Leading Schools NIII-623.2012.2, and by the Program (OFN-15) of the Division of Physical Sciences of the Russian Academy of Sciences. The authors thank the International Space Science Institute (ISSI) and the organizing committee for support and the opportunity to participate in the ISSI Workshop on Microphysics of cosmic plasmas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Artemyev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artemyev, A., Zelenyi, L. Kinetic Structure of Current Sheets in the Earth Magnetotail. Space Sci Rev 178, 419–440 (2013). https://doi.org/10.1007/s11214-012-9954-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9954-5

Keywords

Navigation