Skip to main content
Log in

Who Needs Turbulence?

A Review of Turbulence Effects in the Heliosphere and on the Fundamental Process of Reconnection

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The significant influences of turbulence in neutral fluid hydrodynamics are well accepted but the potential for analogous effects in space and astrophysical plasmas is less widely recognized. This situation sometimes gives rise to the question posed in the title; “Who need turbulence?” After a brief overview of turbulence effects in hydrodynamics, some likely effects of turbulence in solar and heliospheric plasma physics are reviewed here, with the goal of providing at least a partial answer to the posed question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Reme, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002 (2005). doi:10.1103/PhysRevLett.94.215002. http://link.aps.org/abstract/PRL/v94/e215002

    ADS  Google Scholar 

  • G. Bateman, MHD Instabilities (MIT Press, Cambridge, 1978)

    Google Scholar 

  • B. Bavassano, M. Dobrowolny, F. Mariani, N.F. Ness, Radial evolution of power spectra of interplanetary Alfvénic turbulence. J. Geophys. Res. 87, 3617 (1982a)

    ADS  Google Scholar 

  • B. Bavassano, M. Dobrowolny, G. Fanfoni, F. Mariani, N.F. Ness, Statistical properties of MHD fluctuations associated with high-speed streams from Helios-2 observations. Sol. Phys. 78, 373–384 (1982b)

    ADS  Google Scholar 

  • A. Bhattacharjee, Y. Huang, H. Yang, B. Rogers, Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16(11), 112102 (2009). doi:10.1063/1.3264103

    ADS  Google Scholar 

  • J.W. Bieber, W. Wanner, W.H. Matthaeus, Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J. Geophys. Res. 101, 2511–2522 (1996)

    ADS  Google Scholar 

  • G. Birkhoff, Hydrodynamics (Princeton University Press, Princeton, 1960)

    MATH  Google Scholar 

  • D. Biskamp, Magnetic reconnection via current sheets. Phys. Fluids 29, 1520 (1986)

    ADS  MATH  Google Scholar 

  • J.E. Borovsky, Flux tube texture of the solar wind: strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113, 8110 (2008). doi:10.1029/2007JA012684

    Google Scholar 

  • J.E. Borovsky, H.O. Funsten, MHD turbulence in the earth’s plasma sheet: dynamics, dissipation, and driving. J. Geophys. Res. 108, 1284 (2003). doi:10.1029/2002JA009625

    Google Scholar 

  • J.E. Borovsky, R.C. Elphic, H.O. Funsten, M.F. Thomsen, The Earth’s plasma sheet as a laboratory for flow turbulence in high-β MHD. J. Plasma Phys. 57, 1–34 (1997)

    ADS  Google Scholar 

  • A. Brandenburg, The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 550, 824 (2001)

    ADS  Google Scholar 

  • B. Breech, W.H. Matthaeus, L.J. Milano, C.W. Smith, Probability distributions of the induced electric field of the solar wind. J. Geophys. Res. 108, 1153 (2003). doi:1029/2002JA009529

    Google Scholar 

  • B. Breech, W.H. Matthaeus, J. Minnie, S. Oughton, S. Parhi, J.W. Bieber, B. Bavassano, Radial evolution of cross helicity in high-latitude solar wind. Geophys. Res. Lett. 32, 06103 (2005). doi:10.1029/2004GL022321

    Google Scholar 

  • B. Breech, W.H. Matthaeus, J. Minnie, J.W. Bieber, S. Oughton, C.W. Smith, P.A. Isenberg, Turbulence transport throughout the heliosphere. J. Geophys. Res. (2008). doi:10.1029/2007JA012711

  • L.F. Burlaga, N.F. Ness, Macro- and micro-structure of the interplanetary magnetic field. Can. J. Phys. 46, 962 (1968)

    ADS  Google Scholar 

  • L.F. Burlaga, N.F. Ness, Tangential discontinuities in the solar wind. Sol. Phys. 9, 467–477 (1969). doi:10.1007/BF02391672

    ADS  Google Scholar 

  • P.A. Cassak, M.A. Shay, J.F. Drake, Scaling of Sweet–Parker reconnection with secondary islands. Phys. Plasmas 16(12), 120702 (2009). doi:10.1063/1.3274462. http://link.aip.org/link/?PHP/16/120702/1

    ADS  Google Scholar 

  • B.D.G. Chandran, P. Pongkitiwanichakul, P.A. Isenberg, M.A. Lee, S.A. Markovskii, J.V. Hollweg, B.J. Vasquez, Resonant interactions between protons and oblique Alfvén/ion-cyclotron waves in the solar corona and solar flares. Astrophys. J. 722, 710–720 (2010). doi:10.1088/0004-637X/722/1/710. http://stacks.iop.org/0004-637X/722/i=1/a=710

    ADS  Google Scholar 

  • C.H.K. Chen, R.T. Wicks, T.S. Horbury, A.A. Schekochihin, Interpreting power anisotropy measurements in plasma turbulence. Astrophys. J. 711, 79–83 (2010). doi:10.1088/2041-8205/711/2/L79

    ADS  Google Scholar 

  • P.J. Coleman, Hydromagnetic waves in the interplanetary plasma. Phys. Rev. Lett. 17, 207–211 (1966)

    ADS  Google Scholar 

  • P.J. Coleman, Turbulence, viscosity, and dissipation in the solar wind plasma. Astrophys. J. 153, 371–388 (1968)

    ADS  Google Scholar 

  • S.R. Cranmer, Self-consistent models of the solar wind. Space Sci. Rev. (2010). doi:10.1007/s11214-010-9674-7

  • S.R. Cranmer, A.A. van Ballegooijen, R. Edgar, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 171, 520–551 (2007). doi:10.1086/518001

    ADS  Google Scholar 

  • S. Dasso, L.J. Milano, W.H. Matthaeus, C.W. Smith, Anisotropy in fast and slow solar wind fluctuations. Astrophys. J. 635, 181–184 (2005)

    ADS  Google Scholar 

  • T. de Kármán, L. Howarth, On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 164, 192–215 (1938)

    ADS  Google Scholar 

  • B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, C.J. Schrijver, A.M. Title, R.A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, S. Nagata, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574–1577 (2007). doi:10.1126/science.1151747

    ADS  Google Scholar 

  • B. De Pontieu, S.W. McIntosh, V.H. Hansteen, C.J. Schrijver, Observing the roots of solar coronal heating—in the chromosphere. Astrophys. J. 701, 1–6 (2009). doi:10.1088/0004-637X/701/1/L1. http://stacks.iop.org/1538-4357/701/L1

    ADS  Google Scholar 

  • P. Dmitruk, D.O. Gómez, Astrophys. J. 484, L83 (1997)

    ADS  Google Scholar 

  • P. Dmitruk, D.O. Gómez, W.H. Matthaeus, Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics. Phys. Plasmas 10, 3584–3591 (2003). doi:10.1063/1.1602698

    ADS  Google Scholar 

  • C.F. Driscoll, K.S. Fine, Experiments on vortex dynamics in pure electron plasmas. Phys. Fluids, B Plasma Phys. 2, 1359–1366 (1990). doi:10.1063/1.859556

    Google Scholar 

  • G. Einaudi, M. Velli, Nanoflares and current sheet dissipation. Space Sci. Rev. 68, 97 (1994)

    ADS  Google Scholar 

  • G. Einaudi, M. Velli, H. Politano, A. Pouquet, Energy release in a turbulent corona. Astrophys. J. 457, 113 (1996)

    ADS  Google Scholar 

  • U. Frisch, Turbulence (CUP, Cambridge, 1995)

    MATH  Google Scholar 

  • M. Georgoulis, M. Velli, G. Einaudi, Statistical properties of magnetic activity in the solar corona. Astrophys. J. 497, 957 (1998)

    ADS  Google Scholar 

  • M.L. Goldstein, D.A. Roberts, A.E. Deane, S. Ghosh, H.K. Wong, Numerical simulation of Alfvénic turbulence in the solar wind. J. Geophys. Res. 104, 14 (1999). doi:10.1029/1998JA900128

    Google Scholar 

  • A. Greco, P. Chuychai, W.H. Matthaeus, S. Servidio, P. Dmitruk, Intermittent MHD structures and classical discontinuities. Geophys. Res. Lett. (2008). doi:10.1029/2008GL035454

  • A. Greco, W.H. Matthaeus, S. Servidio, P. Chuychai, P. Dmitruk, Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. 691, 111–114 (2009). doi:10.1088/0004-637X/691/2/L111

    ADS  Google Scholar 

  • K. Hamilton, C.W. Smith, B.J. Vasquez, R.J. Leamon, Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU. J. Geophys. Res. (2008). doi:10.1029/2007JA012559

  • T. Hartlep, W.H. Matthaeus, N.S. Padhye, C.W. Smith, Magnetic field strength distribution in interplanetary turbulence. J. Geophys. Res. 105, 5135–5139 (2000)

    ADS  Google Scholar 

  • J. Heyvaerts, E.R. Priest, A self-consistent turbulent model for solar coronal heating. Astrophys. J. 390, 297 (1992)

    ADS  Google Scholar 

  • J.V. Hollweg, On wkb expansions for Alfvén waves in the solar-wind. J. Geophys. Res. 95, 14873 (1990)

    ADS  Google Scholar 

  • J.V. Hollweg, Comment on “Gravitational damping of Alfvén waves in stellar atmospheres and winds”. Astrophys. J. 488, 895 (1997)

    ADS  Google Scholar 

  • T. Horbury, A. Balogh, R.J. Forsyth, E.J. Smith, Observations of evolving turbulence in the polar solar wind. Geophys. Res. Lett. 22, 3401–3404 (1995)

    ADS  Google Scholar 

  • A. Ishizawa, R. Horiuchi, H. Ohtani, Two-scale structure of the current layer controlled by meandering motion during steady-state collisionless driven reconnection. Phys. Plasmas 11, 3579 (2004)

    ADS  Google Scholar 

  • J.R. Jokipii, Turbulence and scintillations in the interplanetary plasma. Annu. Rev. Astron. Astrophys. 11, 1 (1973)

    ADS  Google Scholar 

  • E.J. Kim, P.H. Diamond, On turbulent reconnection. Astrophys. J. 556, 1052–1065 (2001a)

    ADS  Google Scholar 

  • E.J. Kim, P.H. Diamond, Towards a self-consistent theory of turbulent reconnection. Phys. Lett. A 291, 407 (2001b)

    ADS  MATH  Google Scholar 

  • J.L. Kohl, et al., UVCS/SOHO empirical determination of anisotropic velocity distributions in the solar corona. Astrophys. J. 501, 127 (1998)

    ADS  Google Scholar 

  • A.N. Kolmogorov, Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941a). [Reprinted in Proc. R. Soc. London, Ser. A 434, 9–13 (1991)]

    ADS  Google Scholar 

  • A.N. Kolmogorov, On degeneration of isotropic turbulence in an incompressible viscous liquid. C. R. Acad. Sci. U.R.S.S. 31, 538–540 (1941b)

    Google Scholar 

  • A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 12, 82 (1962)

    MathSciNet  ADS  Google Scholar 

  • G. Kowal, A. Lazarian, E.T. Vishniac, K. Otmianowska-Mazur, Numerical tests of fast reconnection in weakly stochastic magnetic fields. Astrophys. J. 700, 63–85 (2009). doi:10.1088/0004-637X/700/1/63

    ADS  Google Scholar 

  • R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965)

    MathSciNet  ADS  Google Scholar 

  • G. Lapenta, Self-feeding turbulent magnetic reconnection on macroscopic scales. Phys. Rev. Lett. 100(23), 235001 (2008). doi:10.1103/PhysRevLett.100.235001

    MathSciNet  ADS  Google Scholar 

  • A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999)

    ADS  Google Scholar 

  • R.J. Leamon, W.H. Matthaeus, C.W. Smith, H.K. Wong, Contribution of cyclotron-resonant damping to kinetic dissipation of interplanetary turbulence. Astrophys. J. 507, 181–184 (1998a)

    ADS  Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, W.H. Matthaeus, H.K. Wong, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775 (1998b)

    ADS  Google Scholar 

  • R.J. Leamon, W.H. Matthaeus, C.W. Smith, G.P. Zank, D.J. Mullan, S. Oughton, MHD-driven kinetic dissipation in the solar wind and corona. Astrophys. J. 537, 1054–1062 (2000). doi:10.1086/309059

    ADS  Google Scholar 

  • E. Lee, M.E. Brachet, A. Pouquet, P.D. Mininni, D. Rosenberg, Lack of universality in decaying magnetohydrodynamic turbulence. Phys. Rev. E (2010). doi:10.1103/PhysRevE.81.016318

  • X. Li, S. Habbal, J.V. Hollweg, R. Esser, Heating and cooling of protons by turbulence-driven ion cyclotron waves in the fast solar wind. J. Geophys. Res. 104, 2521 (1999)

    ADS  Google Scholar 

  • N.F. Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, T.A. Yousef, Turbulent magnetic reconnection in two dimensions. Mon. Not. R. Astron. Soc. (2009). doi:10.1111/j.1745-3933.2009.00742.x

  • B.T. MacBride, C.W. Smith, M.A. Forman, The turbulent cascade at 1 AU: Energy transfer and the third-order scaling for MHD. Astrophys. J. 679, 1644–1660 (2008). doi:10.1086/529575. http://www.journals.uchicago.edu/doi/abs/10.1086/529575

    ADS  Google Scholar 

  • B.T. MacBride, C.W. Smith, B.J. Vasquez, Inertial-range anisotropies in the solar wind from 0.3 to 1 au: Helios 1 observations. J. Geophys. Res. (2010). doi:10.1029/2009JA014939

  • F. Malara, M. Velli, Parametric instability of a large-amplitude nonmonochromatic Alfvén wave. Phys. Plasmas 3, 4427–4433 (1996)

    ADS  Google Scholar 

  • F. Malara, L. Primavera, P. Veltri, Dissipation of Alfvén waves in compressible inhomogeneous media. Nuovo Cimento Soc. Ital. Fis., C Geophys. Space Phys. 20, 903–909 (1997)

    ADS  Google Scholar 

  • W.H. Matthaeus, Magnetic reconnection in two dimensions: localization of current and vorticity near magnetic X-points. Geophys. Res. Lett. 9, 660 (1982)

    ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 87, 6011–6028 (1982)

    ADS  Google Scholar 

  • W.H. Matthaeus, S.L. Lamkin, Rapid magnetic reconnection caused by finite amplitude fluctuations. Phys. Fluids 28, 303–307 (1985)

    ADS  Google Scholar 

  • W.H. Matthaeus, S.L. Lamkin, Turbulent magnetic reconnection. Phys. Fluids 29, 2513–2534 (1986)

    ADS  Google Scholar 

  • W.H. Matthaeus, D. Montgomery, Selective decay hypothesis at high mechanical and magnetic Reynolds numbers. Ann. N.Y. Acad. Sci. 357, 203–222 (1980)

    ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, D.A. Roberts, Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95, 20 (1990)

    Google Scholar 

  • W.H. Matthaeus, G.P. Zank, S. Oughton, D.J. Mullan, P. Dmitruk, Coronal heating by MHD turbulence driven by reflected low-frequency waves. Astrophys. J. 523, 93–96 (1999)

    ADS  Google Scholar 

  • J.F. McKenzie, M. Banaszkiewicz, W.I. Axford, Acceleration of the high speed solar wind. Astron. Astrophys. 303, 45 (1995)

    ADS  Google Scholar 

  • Z. Mikić, D.D. Schnack, G. Van Hoven, Creation of current filaments in the solar corona. Astrophys. J. 338, 1148 (1989)

    ADS  Google Scholar 

  • A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. 1 (MIT Press, Cambridge, 1971)

    Google Scholar 

  • A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. 2 (MIT Press, Cambridge, 1975)

    Google Scholar 

  • W.C. Müller, D. Biskamp, Scaling properties of three-dimensional magnetohydrodynamc turbulence. Phys. Rev. Lett. 84, 475 (2000)

    ADS  Google Scholar 

  • Y. Narita, K.H. Glassmeier, R.A. Treumann, Wave-number spectra and intermittency in the terrestrial foreshock region. Phys. Rev. Lett. 97, 191101 (2006). doi:10.1103/PhysRevLett.97.191101. http://link.aps.org/abstract/PRL/v97/e191101

    ADS  Google Scholar 

  • A.M. Obukhov, On the energy distribution in the spectrum of a turbulent flow. Dokl. Akad. Nauk SSSR 32, 22–24 (1941a). [C.R. (Dokl.) Acad. Sci. URSS 32, 19 (1963)]

    Google Scholar 

  • A.M. Obukhov, Spectral energy distribution in a turbulent flow. Izv. Acad. Nauk. SSSR. Ser. Georg. Geofiz. 5, 453 (1941b)

    Google Scholar 

  • A.M. Obukhov, Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77–81 (1962a)

    MathSciNet  ADS  Google Scholar 

  • A.M. Obukhov, Some specific features of atmospheric turbulence. J. Geophys. Res. 67, 3011–3014 (1962b)

    ADS  MATH  Google Scholar 

  • S.A. Orszag, Lectures on the statistical theory of turbulence, in Fluid Dynamics, ed. by R. Balian, J.L. Peube (Gordon and Breach, New York, 1977), p. 235. Les Houches Summer School, 1973

    Google Scholar 

  • S.A. Orszag, L.C. Kells, Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 96, 159 (1980)

    ADS  MATH  Google Scholar 

  • K.T. Osman, T.S. Horbury, Multispacecraft measurement of anisotropic correlation functions in solar wind turbulence. Astrophys. J. 654, 103–106 (2007)

    ADS  Google Scholar 

  • K.T. Osman, T.S. Horbury, Quantitative estimates of the slab and 2-d power in solar wind turbulence using multispacecraft data. J. Geophys. Res. (2009). doi:10.1029/2008JA014036

  • K.T. Osman, W.H. Matthaeus, A. Greco, S. Servidio, Evidence for inhomogeneous heating in the solar wind. Astrophys. J. 727, 11 (2011). doi:10.1088/2041-8205/727/1/L11

    ADS  Google Scholar 

  • S. Oughton, E.R. Priest, W.H. Matthaeus, The influence of a mean magnetic field on three-dimensional MHD turbulence. J. Fluid Mech. 280, 95–117 (1994). doi:10.1017/S0022112094002867

    ADS  MATH  Google Scholar 

  • E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509 (1957)

    ADS  Google Scholar 

  • E. Parker, Astrophys. J. 174, 499 (1972)

    ADS  Google Scholar 

  • E.N. Parker, Cosmical Magnetic Fields: Their Origin and Activity (OUP, Oxford, 1979)

    Google Scholar 

  • E.N. Parker Astrophys. J. 372, 719 (1991)

    ADS  Google Scholar 

  • H.E. Petschek, Magnetic field annihilation, in Physics of Solar Flares, ed. by W.N. Hess. NASA SP-50 (NASA, Washington, 1964), pp. 425–439

    Google Scholar 

  • M.S. Plesset, Am. J. Phys. 19, 471 (1951)

    Google Scholar 

  • J.J. Podesta, Laws for third-order moments in homogeneous anisotropic incompressible magnetohydrodynamic turbulence. J. Fluid Mech. 609, 171–194 (2008). doi:10.1017/S0022112008002280

    MathSciNet  ADS  MATH  Google Scholar 

  • J.J. Podesta, M.A. Forman, C.W. Smith, Anisotropic form of third-order moments and relationship to the cascade rate in axisymmetric magnetohydrodynamic turbulence. Phys. Plasmas 14(9), 092305 (2007). doi:10.1063/1.2783224. http://link.aip.org/link/?PHP/14/092305/1

    ADS  Google Scholar 

  • H. Politano, A. Pouquet, Dynamical length scales for turbulent magnetized flows. Geophys. Res. Lett. 25, 273–276 (1998a). doi:10.1029/97GL03642

    ADS  Google Scholar 

  • H. Politano, A. Pouquet, von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E 57, 21 (1998b)

    ADS  Google Scholar 

  • Y. Ponty, P.D. Mininni, D.C. Montgomery, J.F. Pinton, H. Politano, A. Pouquet, Numerical study of dynamo action at low magnetic Prandtl numbers. Phys. Rev. Lett. 94, 164502 (2005). doi:10.1103/PhysRevLett.94.164502. http://link.aps.org/abstract/PRL/v94/e164502

    ADS  Google Scholar 

  • A.F. Rappazzo, M. Velli, G. Einaudi, R.B. Dahlburg, Nonlinear dynamics of the Parker scenario for coronal heating. Astrophys. J. 677, 1348–1366 (2008). doi:10.1086/528786

    ADS  Google Scholar 

  • A.F. Rappazzo, M. Velli, G. Einaudi, Shear photospheric forcing and the origin of turbulence in coronal loops. Astrophys. J. 722, 65–78 (2010a). doi:10.1088/0004-637X/722/1/65. http://stacks.iop.org/0004-637X/722/i=1/a=65

    ADS  Google Scholar 

  • A. Retinó, D. Sundkvist, A. Vaivads, F. Mozer, M. André, C.J. Owen: In situ evidence of magnetic reconnection in turbulent plasma. Nat. Phys. 3, 236 (2007)

    Google Scholar 

  • J.D. Richardson, K.I. Paularena, A.J. Lazarus, J.W. Belcher, Radial evolution of the solar wind from IMP 8 to Voyager 2. Geophys. Res. Lett. 22, 325 (1995)

    ADS  Google Scholar 

  • A. Richter, E. Naudascher, Fluctuating forces on a rigid circular cylinder in confined flow. J. Fluid Mech. 78, 561–576 (1976). doi:10.1017/S0022112076002607

    ADS  Google Scholar 

  • D.A. Roberts, Interplanetary observational constraints on Alfvén wave acceleration of the solar wind. J. Geophys. Res. 94, 6899–6905 (1989)

    ADS  Google Scholar 

  • D.A. Roberts, Demonstrations that the solar wind is not accelerated by waves or turbulence. Astrophys. J. 711(2), 1044–1050 (2010). doi:10.1088/0004-637X/711/2/1044. http://stacks.iop.org/0004-637X/711/1044

    ADS  Google Scholar 

  • D.A. Roberts, L.W. Klein, M.L. Goldstein, W.H. Matthaeus, The nature and evolution of magnetohydrodynamic fluctuations in the solar wind: Voyager observations. J. Geophys. Res. 92, 11 (1987a)

    Google Scholar 

  • D.A. Roberts, M.L. Goldstein, L.W. Klein, W.H. Matthaeus, Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons. J. Geophys. Res. 92, 12 (1987b)

    Google Scholar 

  • D.A. Roberts, S. Ghosh, M.L. Goldstein, W.H. Matthaeus, Magnetohydrodynamic simulation of the radial evolution and stream structure of solar wind turbulence. Phys. Rev. Lett. 67, 3741 (1992a)

    ADS  Google Scholar 

  • D.A. Roberts, M.L. Goldstein, W.H. Matthaeus, S. Ghosh, Velocity shear generation of solar wind turbulence. J. Geophys. Res. 97, 17 (1992b)

    Google Scholar 

  • D.C. Robinson, M.G. Rusbridge, Structure of turbulence in the zeta plasma. Phys. Fluids 14, 2499–2511 (1971). doi:10.1063/1.1693359

    ADS  Google Scholar 

  • M.E. Ruiz, S. Dasso, W.H. Matthaeus, E. Marsch, J.M. Weygand, Anisotropy of the magnetic correlation function in the inner heliosphere, in Twelfth International Solar Wind Conference, vol. 1216 (2010), pp. 160–163. doi:10.1063/1.3395826

    Google Scholar 

  • F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105(13), 131101 (2010). doi:10.1103/PhysRevLett.105.131101

    ADS  Google Scholar 

  • J. Sakai, T. Tajima, F. Brunel, Forced reconnection by nonlinear magnetohydrodynamic waves. Sol. Phys. 91, 103–113 (1984). doi:10.1007/BF00213617

    ADS  Google Scholar 

  • T. Sato, T. Hayashi, Externally driven magnetic reconnection and a powerful energy converter. Phys. Fluids 22, 1189 (1979)

    ADS  Google Scholar 

  • C.J. Schrijver, A.M. Title, The topology of a mixed-polarity potential field, and inferences for the heating of the quiet solar corona. Sol. Phys. 207, 223–240 (2002)

    ADS  Google Scholar 

  • C.J. Schrijver, M.L. De Rosa, A.M. Title, T.R. Metcalf, The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628, 501–513 (2005). doi:10.1086/430733

    ADS  Google Scholar 

  • S. Servidio, W.H. Matthaeus, M.A. Shay, P.A. Cassak, P. Dmitruk, Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 102, 115003 (2009). doi:10.1103/PhysRevLett.102.115003. http://link.aps.org/abstract/PRL/v102/e115003

    ADS  Google Scholar 

  • S. Servidio, W.H. Matthaeus, M.A. Shay, P. Dmitruk, P.A. Cassak, M. Wan, Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 17(3), 032315 (2010). doi:10.1063/1.3368798. http://link.aip.org/link/?PHP/17/032315/1

    ADS  Google Scholar 

  • Z. She, E. Lévêque, Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336 (1994)

    ADS  Google Scholar 

  • J.V. Shebalin, W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525–547 (1983)

    ADS  Google Scholar 

  • L. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F. Lepreti, P. Veltri, R. Bruno, B. Bavassano, E. Pietropaolo, Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001 (2007). doi:10.1103/PhysRevLett.99.115001. http://link.aps.org/abstract/PRL/v99/e115001

    ADS  Google Scholar 

  • T.K. Suzuki, S. Inutsuka, Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: parametric study for fast/slow winds and disappearance of solar winds. J. Geophys. Res. 111, 06101 (2006). doi:10.1029/2005JA011502

    Google Scholar 

  • P.A. Sweet, The production of high-energy particles in solar flares. Suppl. Nuovo Cim. 8, 188 (1958)

    Google Scholar 

  • D. Telloni, E. Antonucci, M.A. Dodero, O VI kinetic temperature and outflow velocity in solar corona beyond 3R????, in SOHO-17. 10 Years of SOHO and Beyond, vol. 617 (ESA Special Publication, 2006)

  • J.A. Tessein, C.W. Smith, B.T. MacBride, W.H. Matthaeus, M.A. Forman, J.E. Borovsky, Spectral indices for multi-dimensional interplanetary turbulence at 1 au. Astrophys. J. 692, 684–693 (2009). doi:10.1088/0004-637X/692/1/684

    ADS  Google Scholar 

  • B.T. Tsurutani, E.J. Smith, Interplanetary discontinuities—Temporal variations and the radial gradient from 1 to 8.5 AU. J. Geophys. Res. 84, 2773–2787 (1979)

    ADS  Google Scholar 

  • C.Y. Tu, E. Marsch, A model of solar wind fluctuations with two components: Alfvén waves and convective structures. J. Geophys. Res. 98, 1257 (1993)

    ADS  Google Scholar 

  • C.Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind. Space Sci. Rev. 73, 1–210 (1995)

    ADS  Google Scholar 

  • A.A. Van Ballegooijen, Cascade of magnetic energy as a mechanism of coronal heating. Astrophys. J. 311, 1001–1014 (1986)

    ADS  Google Scholar 

  • M. van Dyke, An Album of Fluid Motion (The Parabolic Press, Palo Alto, 1982)

    Google Scholar 

  • B.J. Vasquez, V.I. Abramenko, D.K. Haggerty, C.W. Smith, Numerous small magnetic field discontinuities of Bartels rotation 2286 and the potential role of Alfvénic turbulence. J. Geophys. Res. 112, 11102 (2007a). doi:10.1029/2007JA012504

    Google Scholar 

  • B.J. Vasquez, C.W. Smith, K. Hamilton, B.T. MacBride, R.J. Leamon, Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J. Geophys. Res. (2007b). doi:10.1029/2007JA012305

  • M. Velli, S.R. Habbal, R. Esser, Coronal plumes and fine-scale structured in high-speed solar-wind streams. Space Sci. Rev. 70, 391 (1994)

    ADS  Google Scholar 

  • A. Verdini, M. Velli, Alfvén waves and turbulence in the solar atmosphere and solar wind. Astrophys. J. 662, 669–676 (2007). doi:10.1086/510710

    ADS  Google Scholar 

  • A. Verdini, M. Velli, W.H. Matthaeus, S. Oughton, P. Dmitruk, A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. 708, 116–120 (2010). doi:10.1088/2041-8205/708/2/L116

    ADS  Google Scholar 

  • M.K. Verma, D.A. Roberts, M.L. Goldstein, Turbulent heating and temperature evolution in the solar wind plasma. J. Geophys. Res. 100, 19–839 (1995)

    Google Scholar 

  • M. Wan, S. Oughton, S. Servidio, W.H. Matthaeus, Generation of non-Gaussian statistics and coherent structures in ideal magnetohydrodynamics. Phys. Plasmas 16(8), 080703 (2009a). doi:10.1063/1.3206949

    ADS  Google Scholar 

  • M. Wan, S. Servidio, S. Oughton, W.H. Matthaeus, The third-order law for increments in magnetohydrodynamic turbulence with constant shear. Phys. Plasmas 16, 090703 (2009b). doi:10.1063/1.3240333. http://link.aip.org/link/?PHP/16/090703/1

    ADS  Google Scholar 

  • M. Wan, S. Oughton, S. Servidio, W.H. Matthaeus, On the accuracy of simulations of turbulence. Phys. Plasmas 17, 082308 (2010). doi:10.1063/1.3474957. http://link.aip.org/link/?PHP/17/082308/1

    ADS  Google Scholar 

  • J.M. Weygand, W.H. Matthaeus, S. Dasso, M.G. Kivelson, L.M. Kistler, C. Mouikis, Anisotropy of the Taylor scale and the correlation scale in plasma sheet and solar wind magnetic field fluctuations. J. Geophys. Res. (2009). doi:10.1029/2008JA013766

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Matthaeus.

Additional information

We are indebted to S. Fuselier, J. Gosling, and S. Antiochos for posing the title question at the Yosemite meeting and elsewhere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthaeus, W.H., Velli, M. Who Needs Turbulence?. Space Sci Rev 160, 145–168 (2011). https://doi.org/10.1007/s11214-011-9793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9793-9

Keywords

Navigation