Skip to main content
Log in

Separation of the Magnetic Field into External and Internal Parts

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The magnetic field of a planet or a planetary moon contains contributions from a variety of sources in the environment of the body (external sources) and its interior (internal sources). This chapter describes different methods that have been developed for the separation of external and internal source contributions, and their application to selected planets and one of Jupiter’s moons, Ganymede.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • I.I. Alexeev, E.S. Belenkaya, S.Yu. Bobrovnikov, J.A. Slavin, M. Sarantos, Paraboloid model of Mercury’s magnetosphere. J. Geophys. Res. 113(A12), 12210 (2008)

    Article  Google Scholar 

  • B.J. Anderson, M.H. Acuña, D.A. Lohr, J. Scheifele, A. Raval, H. Korth, J.A. Slavin, The magnetometer instrument on MESSENGER. Space Sci. Rev. 131, 417–450 (2007). doi:10.1007/s11214-007-9246-7

    Article  ADS  Google Scholar 

  • B.J. Anderson, M.H. Acuña, H. Korth, M.E. Purucker, C.L. Johnson, J.A. Slavin, S.C. Solomon, R.L. McNutt, The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321, 82 (2008). doi:10.1126/science.1159081

    Article  ADS  Google Scholar 

  • G. Backus, Poloidal and toroidal fields in geomagnetic field modeling. Rev. Geophys. 24, 75–109 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  • L. Bauer, Chief results of a preliminary analysis of the Earth’s magnetic field for 1922. Terr. Magn. Atmos. Electr. 28(1), 1–28 (1923)

    Article  Google Scholar 

  • W. Baumjohann, A. Matsuoka, W. Magnes, K.H. Glassmeier, R. Nakamura, H. Biernat, M. Delva, K. Schwingenschuh, T. Zhang, H.H.U. Auster, K. Fornaçon, U. Motschmann, I. Richter, A. Balogh, C. Carr, P.J. Cargill, M. Dougherty, T.S. Horbury, E.A. Lucek, T. Takahashi, M. Tanaka, T. Nagai, H. Tsunakawa, M. Matsushima, M. Shinohara, H. Kawano, A. Yoshikawa, H. Shibuya, T. Nakagawa, M. Hoshino, Y. Tanaka, R. Kataoka, B. Anderson, C. Russell, Magnetic field investigation of Mercury’s magnetosphere and inner heliosphere environment by MMO/MGF. Planet. Space Sci. 57, (2009)

  • J.C. Cain, B.B. Ferguson, D. Mozzoni, An n=90 internal potential function of the Martian crustal magnetic field. J. Geophys. Res. (Planets) 108, 2–1 (2003). doi:10.1029/2000JE001487

    Google Scholar 

  • S. Chapman, J. Bartels, Geomagnetism, vols. I+II (Clarendon Press, Oxford, 1940)

    Google Scholar 

  • J.Y. Choe, D.B. Beard, The compressed geomagnetic field as a function of dipole tilt. Planet. Space Sci. 22, 595–608 (1974a)

    Article  ADS  Google Scholar 

  • J.Y. Choe, D.B. Beard, The near Earth magnetic field of the magnetotail current. Planet. Space Sci. 22, 609–615 (1974b). doi:10.1016/0032-0633(74)90094-4

    Article  ADS  Google Scholar 

  • J.T. Clarke, J. Ajello, G. Ballester, L.B. Jaffel, J. Connerney, J.C. Gerard, G.R. Gladstone, D. Grodent, W. Pryor, J. Trauger, J.H. Waite Jr., Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature 415, 997–1000 (2002)

    Article  ADS  Google Scholar 

  • M.W. Dunlop, A. Balogh, K.H. Glassmeier, P. Robert, Four-point cluster application of magnetic field analysis tools: The curlometer. J. Geophys. Res. 107, 23–12314 (2002). doi:10.1029/2001JA005088

    Google Scholar 

  • E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006)

    ADS  Google Scholar 

  • H. Fritsche, Die Elemente des Erdmagnetismus und ihre säkularen Änderungen während des Zeitraumes 1550 bis 1900 (St. Petersburg, 1900)

  • C.F. Gauss, Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838 (Göttinger Magnetischer Verein, Leipzig, 1839), pp. 1–52

    Google Scholar 

  • G. Giampieri, A. Balogh, Modelling of magnetic field measurements at Mercury. Planet. Space Sci. 49, 1637–1642 (2001)

    Article  ADS  Google Scholar 

  • K.H. Glassmeier, H. Auster, D. Heyner, K. Okrafka, C. Carr, G. Berghofer, B.J. Anderson, A. Balogh, W. Baumjohann, P.J. Cargill, U. Christensen, M. Delva, M. Dougherty, K. Fornaçon, T.S. Horbury, E.A. Lucek, W. Magnes, M. Mandea, A. Matsuoka, M. Matsushima, U. Motschmann, R. Nakamura, Y. Narita, I. Richter, K. Schwingenschuh, H. Shibuya, J.A. Slavin, C. Sotin, B. Stoll, H. Tsunakawa, S. Vennerstrom, J. Vogt, T. Zhang, The fluxgate magnetometer of the BepiColombo planetary orbiter. Planet. Space Sci. 57, (2009)

  • J. Grosser, K.H. Glassmeier, A. Stadelmann, Induced magnetic field effects at planet Mercury. Planet. Space Sci. 52, 1251–1260 (2004). doi:10.1016/j.pss.2004.08.005

    Article  ADS  Google Scholar 

  • D. Heyner, Magnetfeldmessungen am Merkur: Einfluss externer Stromsysteme. Diploma thesis, Techn. Univ. Braunschweig (2007)

  • W.H. Ip, A. Kopp, Resistive MHD simulations of Ganymede’s magnetosphere: 2. Birkeland currents and particle energetics. J. Geophys. Res. 107(A12), 1491 (2002). doi:10.1029/2001JA005072

    Article  Google Scholar 

  • D.J. Jackson, D.B. Beard, The magnetic field of Mercury. J. Geophys. Res. 82, 2828–2836 (1977). doi:10.1029/JA082i019p02828

    Article  ADS  Google Scholar 

  • X. Jia, R.J. Walker, M.G. Kivelson, K.K. Khurana, J.A. Linker, Three-dimensional MHD simulations of Ganymede’s magnetosphere. J. Geophys. Res. 113, 6212 (2008). doi:10.1029/2007JA012748

    Article  Google Scholar 

  • X. Jia, M.G. Kivelson, K.K. Khurana, R.J. Walker, Magnetic fields of the satellites of Jupiter and Saturn. Space Sci. Rev. (2009a, this issue). doi:10.1007/s11214-009-9507-8

    Google Scholar 

  • X. Jia, R.J. Walker, M.G. Kivelson, K.K. Khurana, J.A. Linker, Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. J. Geophys. Res. (2009b) doi:10.1029/2009JA014375

    Google Scholar 

  • M.G. Kivelson, C.T. Russell, Introduction to Space Physics (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  • M.G. Kivelson, K.K. Khurana, M. Volwerk, The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, C.T. Russell, R.J. Walker, J. Warnecke, F.V. Coroniti, C. Polanskey, D.J. Southwood, G. Schubert, Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384, 537–541 (1996)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, J. Warnecke, L. Bennett, S. Joy, K.K. Khurana, J.A. Linker, C.T. Russell, R.J. Walker, C. Polanskey, Ganymede’s magnetosphere: Magnetometer overview. J. Geophys. Res. 103, 19963–19972 (1998)

    Article  ADS  Google Scholar 

  • A. Kopp, W.H. Ip, Resistive MHD simulations of Ganymede’s magnetosphere: 1. Time variabilities of the magnetic field topology. J. Geophys. Res. 107(A12), 1490 (2002). doi:10.1029/2001JA005071

    Article  Google Scholar 

  • H. Korth, B.J. Anderson, M.H. Acuña, J.A. Slavin, N.A. Tsyganenko, S.C. Solomon, R.L. McNutt, Determination of the properties of Mercury’s magnetic field by the MESSENGER mission. Planet. Space Sci. 52, 733–746 (2004). doi:10.1016/j.pss.2003.12.008

    Article  ADS  Google Scholar 

  • R.A. Langel, The main field, in Geomagnetism, vol. 1, ed. by J.A. Jacobs (Academic Press, London, 1987), pp. 249–512

    Google Scholar 

  • R.A. Langel, R.H. Estes, Large-scale, near-Earth magnetic fields from external sources and the corresponding induced internal field. J. Geophys. Res. 90, 2487–2494 (1985a)

    Article  ADS  Google Scholar 

  • R.A. Langel, R.H. Estes, The near-Earth magnetic field at 1980 determined from MAGSAT data. J. Geophys. Res. 90, 2495–2509 (1985b)

    Article  ADS  Google Scholar 

  • F.J. Lowes, Mean-square values on sphere of spherical harmonic vector fields. J. Geophys. Res. 71, 2179 (1966)

    ADS  Google Scholar 

  • H. Lühr, M. Korte, M. Mandea, The recent magnetic field and its variations, in Geomagnetic Variations, ed. by K. Glassmeier, H. Soffel, J.W. Negendank (Springer, Berlin, 2009), pp. 25–63

    Chapter  Google Scholar 

  • P. Mauersberger, Das Mittel der Energiedichte des geomagnetischen Hauptfeldes an der Erdoberfläche und seine säkulare Änderung. Gerl. Beitr. Geophys. 65, 207–215 (1956)

    Google Scholar 

  • S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005)

    Article  ADS  Google Scholar 

  • S. Maus, H. Lühr, G. Balasis, M. Rother, M. Mandea, Introducing POMME, the Potsdam magnetic model of the Earth, in Earth Observation with CHAMP, Results from Three Years in Orbit, ed. by C. Reigber, H. Lühr, P. Schwintzer, J. Wickert (Springer, Berlin, 2005), pp. 293–298

    Chapter  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Magnetic field observations near Mercury: Preliminary results from Mariner 10. Science 185, 131–135 (1974)

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Tøffner-Clausen, S. Choi, CHAOS—a model of Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006). doi:10.1111/j.1365-246X.2006.02959.x

    Article  ADS  Google Scholar 

  • N. Olsen, Ionospheric F region currents at middle and low latitudes estimated from Magsat data. J. Geophys. Res. 102(A3), 4563–4576 (1997)

    Article  ADS  Google Scholar 

  • C. Paty, R. Winglee, Multi-fluid MHD simulations of Ganymede’s magnetosphere. Geophys. Res. Lett. 31 (2004). doi:10.1029/2004GL021220

  • C. Paty, R. Winglee, The role of ion cyclotron motion at Ganymede: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett. 33 (2006). doi:10.1029/2005GL025273

  • C. Paty, W. Paterson, R. Winglee, Ion energization in Ganymede’s magnetosphere: Using multifluid simulations to interpret ion energy spectrograms. J. Geophys. Res. 113 (2008). doi:10.1029/2007JA012848

  • C.T. Russell, R.J. Walker, Flux transfer events at Mercury. J. Geophys. Res. 90, 11067–11072 (1985)

    Article  ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, M. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int. 159, 521–547 (2004). doi:10.1111/j.1365-246X.2004.02421.x

    Article  ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, Enhancing comprehensive inversions using the Swarm constellation. Earth Planets Space 58, 371–395 (2006)

    ADS  Google Scholar 

  • J. Saur, F.M. Neubauer, K.H. Glassmeier, Induced magnetic field in solar system bodies. Space Sci. Rev. (2009, this issue)

  • N. Schilling, F.M. Neubauer, J. Saur, Time-varying interaction of Europa with the Jovian magnetosphere: Constraints on the conductivity of Europa’s subsurface ocean. Icarus 192(1), 41–55 (2007). doi:10.1016/j.icarus.2007.06.024

    Article  ADS  Google Scholar 

  • A. Schmidt, Der magnetische Zustand der Erde zur Epoche 1885.0. Archiv der deutschen Seewarte, 21–75 (1898)

  • A. Schmidt, Mitteilungen äber eine neue Berechnung des erdmagnetischen Potentials. Abh. K. Bayrisch. Akad. Wiss. 19(1), 1–66 (1895)

    Google Scholar 

  • J. Scuffham, A. Balogh, A new model of Mercury’s magnetospheric magnetic field. Adv. Space Res. 38, 616–626 (2006). doi:10.1016/j.asr.2005.08.052

    Article  ADS  Google Scholar 

  • G. Siscoe, L. Christopher, Variations in the solar wind stand-off distance at Mercury. Geophys. Res. Lett. 2, 158–160 (1975)

    Article  ADS  Google Scholar 

  • J.A. Slavin, M.H. Acuña, B.J. Anderson, D.N. Baker, M. Benna, G. Gloeckler, R.E. Gold, G.C. Ho, R.M. Killen, H. Korth, S.M. Krimigis, R.L. McNutt, L.R. Nittler, J.M. Raines, D. Schriver, S.C. Solomon, R.D. Starr, P. Trávníček, T.H. Zurbuchen, Mercury’s magnetosphere after MESSENGER’s first flyby. Science 321, 85 (2008). doi:10.1126/science.1159040

    Article  ADS  Google Scholar 

  • S.M. Stone, T.P. Armstrong, Three-dimensional magnetopause and tail current model of the magnetosphere of Ganymede. J. Geophys. Res. 106(A10), 21263–21275 (2001)

    Article  ADS  Google Scholar 

  • N.A. Tsyganenko, A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci. 37, 5–20 (1989). doi:10.1016/0032-0633(89)90066-4

    Article  ADS  Google Scholar 

  • N.A. Tsyganenko, Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. J. Geophys. Res. 100, 5599–5612 (1995). doi:10.1029/94JA03193

    Article  ADS  Google Scholar 

  • N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. J. Geophys. Res. 107(A8), 12-1 (2002a)

    Google Scholar 

  • N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations. J. Geophys. Res. 107(A8), 10-1 (2002b)

    Google Scholar 

  • N.A. Tsyganenko, M.I. Sitnov, Magnetospheric configurations from a high-resolution data-based magnetic field model. J. Geophys. Res. 112(A11), 6225 (2007). doi:10.1029/2007JA012260

    Article  Google Scholar 

  • H. Uno, C.L. Johnson, B.J. Anderson, H. Korth, S.C. Solomon, Modeling Mercury’s internal magnetic field with smooth inversions. Earth Planet. Sci. Lett. (2009) doi:10.1016/j.epsl.2009.02.032

    Google Scholar 

  • Y.C. Whang, Magnetospheric magnetic field of Mercury. J. Geophys. Res. 82, 1024–1030 (1977). doi:10.1029/JA082i007p01024

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Olsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, N., Glassmeier, KH. & Jia, X. Separation of the Magnetic Field into External and Internal Parts. Space Sci Rev 152, 135–157 (2010). https://doi.org/10.1007/s11214-009-9563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9563-0

Keywords

Navigation