Skip to main content
Log in

The Milky Way 3-Helium Abundance

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We are making precise determinations of the abundance of the light isotope of helium, 3He. The 3He abundance in Milky Way sources impacts stellar evolution, chemical evolution, and cosmology. The abundance of 3He is derived from measurements of the hyperfine transition of 3He+ which has a rest wavelength of 3.46 cm (8.665 GHz). As with all the light elements, the present interstellar 3He abundance results from a combination of Big Bang Nucleosynthesis (BBNS) and stellar nucleosynthesis. We are measuring the 3He abundance in Milky Way H ii regions and planetary nebulae (PNe). The source sample is currently comprised of 60 H ii regions and 12 PNe. H ii regions are examples of zero-age objects that are young relative to the age of the Galaxy. Therefore their abundances chronicle the results of billions of years of Galactic chemical evolution. PNe probe material that has been ejected from low-mass (M≤ 2M ) to intermediate-mass (M∼2–5M ) stars to be further processed by future stellar generations. Because the Milky Way ISM is optically thin at centimeter wavelengths, our source sample probes a larger volume of the Galactic disk than does any other light element tracer of Galactic chemical evolution. The sources in our sample possess a wide range of physical properties (including object type, size, temperature, excitation, etc.). The 3He abundances we derive have led to what has been called “The 3He Problem”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • R. Bachiller, T. Forveille, P.J. Huggins, P. Cox, Astron. Astrophys. 324 1123–1134 (1997)

    ADS  Google Scholar 

  • D.S. Balser, T.M. Bania, R.T. Rood, T.L. Wilson, Astrophys. J. 483, 320–334 (1997)

    Article  ADS  Google Scholar 

  • D.S. Balser, T.M. Bania, R.T. Rood, T.W. Wilson, Astrophys. J. 510, 759–783 (1998)

    Article  ADS  Google Scholar 

  • D.S. Balser, R.T. Rood, T.M. Bania, Astrophys. J. 522, L73–L76 (1999)

    Article  ADS  Google Scholar 

  • D.S. Balser, W.M. Goss, T.M. Bania, R.T. Rood, Astrophys. J. 640, 360–368 (2005)

    Article  ADS  Google Scholar 

  • T.M. Bania, R.T. Rood, D.S. Balser, Nature 415, 54–57 (2002)

    Article  ADS  Google Scholar 

  • A.I. Boothroyd, I.-J. Sackmann, Astrophys. J. 510, 232–250 (1999)

    Article  ADS  Google Scholar 

  • C. Charbonnel, Astron. Astrophys. 282, 811–820 (1994)

    ADS  Google Scholar 

  • C. Charbonnel, Astrophys. J. 453, L41–L44 (1995)

    Article  ADS  Google Scholar 

  • C. Charbonnel, Space Sci. Rev. 84, 199–206 (1998)

    Article  ADS  Google Scholar 

  • C. Charbonnel, J.D. Do Nascimento, Astron. Astrophys. 336, 915–919 (1998)

    ADS  Google Scholar 

  • C. Charbonnel, J.A. Brown, G. Wallerstein, Astron. Astrophys. 332, 204–214 (1998)

    ADS  Google Scholar 

  • C. Charbonnel, S. Balachandran, Astron. Astrophys. 359, 563–572 (2000)

    ADS  Google Scholar 

  • D.S.P. Dearborn, J.C. Lattanzio, P.P. Eggleton, Astrophys. J. 639, 405–415 (2006)

    Article  ADS  Google Scholar 

  • P.A. Denissenkov, A. Weiss, Astron. Astrophys. 308, 773–784 (1996)

    ADS  Google Scholar 

  • P.P. Eggleton, D.S.P. Dearborn, J.C. Lattanzio, Sci. Express (2006). 10.1126/science.1133065

  • D. Galli, F. Palla, F. Ferrini, U. Penco, Astrophys. J. 443, 536–550 (1995)

    Article  ADS  Google Scholar 

  • D. Galli, L. Stanghellini, M. Tosi, F. Palla, Astrophys. J. 456, 478–498 (1997)

    Google Scholar 

  • J. Geiss, in Origin and Evolution of Elements, ed. by N. Prantzos, E. Vangioni-Flam, M. Casse (Cambridge Univ. Press, Cambridge, 1993), pp. 89–106

    Google Scholar 

  • G. Gloecker, J. Geiss, Nature 381, 210–212 (1996)

    Article  ADS  Google Scholar 

  • C.J. Hogan, Astrophys. J. 441, L17–L20 (1995)

    Article  ADS  Google Scholar 

  • A. Palacios, C. Charbonnel, M. Forestini, Astron. Astrophys. 375, L9–L13 (2001)

    Article  ADS  Google Scholar 

  • F. Palla, D. Galli, A. Marconi, L. Stanghellini, M. Tosi, Astrophys. J. 568, L57–L60 (2002)

    Article  ADS  Google Scholar 

  • R.T. Rood, T.M. Bania, T.L. Wilson, Astrophys. J. 280, 629–647 (1984)

    Article  ADS  Google Scholar 

  • R.T. Rood, T.M. Bania, T.L. Wilson, D.S. Balser, in ESO/EIPC Workshop on the Light Elements, ed. by P. Crane (Springer, Heidelberg, 1995), pp. 201–214

    Google Scholar 

  • D.A. Roshi, D.S. Balser, T.M. Bania, W.M. Goss, C.G. De Pree, Astrophys. J. 625, 181–193 (2005)

    Article  ADS  Google Scholar 

  • I.-J. Sackmann, A.I. Boothroyd, Astrophys. J. 510, 217–231 (1999)

    Article  ADS  Google Scholar 

  • G.J. Wasserburg, A.I. Boothroyd, I.-J. Sackmann, Astrophys. J. 447, L37–L40 (1995)

    Article  ADS  Google Scholar 

  • A. Weiss, J. Wagenhuber, P.A. Denissenkov, Astron. Astrophys. 313, 581–590 (1996)

    ADS  Google Scholar 

  • M. Tosi, in The Light Elements and Their Evolution, Proceedings of IAU Symposium 198, ed. by L. da Silva, M. Spite, J.R. de Medeiros (ASP, San Francisco, 2000), pp. 525–532

    Google Scholar 

  • J.P. Zahn, Astron. Astrophys. 265, 115–132 (1992)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Bania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bania, T.M., Rood, R.T. & Balser, D.S. The Milky Way 3-Helium Abundance. Space Sci Rev 130, 53–62 (2007). https://doi.org/10.1007/s11214-007-9144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9144-z

Keywords

Navigation