Skip to main content
Log in

Kappa-Distributed Electrons in Solar Outflows: Beam-Plasma Instabilities and Radio Emissions

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Electrostatic (ES) wave instabilities are assumed to be at the origin of radio emissions from interplanetary shocks, and solar coronal sources are most likely induced by electron beams, more energetic but less dense than electron strahls in the solar wind. In this paper, we present the results of a new dispersion and stability analysis for electron populations with Kappa velocity distributions, as often indicated by in situ observations. We investigate, both theoretically and numerically, three electron plasma beam configurations with different implications in the generation of radio emissions. The same three cases, but for Maxwellian distributed electrons, were considered in numerical simulations by Thurgood and Tsiklauri (Astronomy and Astrophysics 584:A83, 2015). Our kinetic plasma approach clarifies the nature of the unstable mode as being an electron beam ES instability (and not a Langmuir instability) in all cases, and for both Kappa and Maxwellian approaches. Electron beam waves are Landau resonant and with frequencies of the fastest growing modes close to but below the plasma frequency (i.e., \(\omega \lesssim \omega _{pe}\)). Suprathermal Kappa tails tend to inhibit the instability by reducing the growth rates, but these effects become minor if the drift speed of the beam is sufficiently high compared to the thermal speed of the electrons. The frequency downshift, also revealed by the observations, clearly tends to increase in the presence of a Kappa-distributed beam. Particle-in-cell (PIC) simulations confirm the inhibiting effects of (initially) Kappa-distributed electrons, but these minor effects in the linear and quasi-linear phases unexpectedly lead to significant decreases in the wave energy levels of the (primary) ES fluctuations near the plasma frequency and higher harmonics. As a result, EM radio (secondary) emissions generated nonlinearly after saturation are even more drastically reduced and can even be completely suppressed. However, the EM emissions around the second harmonic (\(\omega \lesssim 2 \, \omega _{pe}\)) are markedly powered by two symmetric countermoving beams, even in the presence of Kappa electrons. These results offer real promise for a realistic interpretation and modeling of radio emissions observed in heliosphere, arguing in favor of a rigorous spectral analysis of the wave instabilities at their origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published paper.

Notes

  1. Although wavelengths of plasma oscillations below the plasma frequency satisfy \(k \lambda _{De} \simeq 1\), the Doppler shift due to the motion of the solar wind is not sufficient to produce the observed frequency shifts (Fuselier, Gurnett, and Fitzenreiter, 1985).

  2. For an important ion response in the nonlinear effects, 1D PIC simulations suggest a ratio of beam energy to thermal energy of core electrons not less than 1 (Baumgärtel, 2014).

  3. Refer to Cairns (1989), Gary (1993), and Thurgood and Tsiklauri (2015) for more details on the relevance of this parameter in delimiting the regimes of Langmuir and electron beam instabilities.

References

  • Bale, S.D., Reiner, M.J., Bougeret, J.-L., Kaiser, M.L., Krucker, S., Larson, D.E., Lin, R.P.: 1999, The source region of an interplanetary type II radio burst. Geophysical Research Letters 26(11), 1573. DOI.

    Article  ADS  Google Scholar 

  • Baumgärtel, K.: 2014, Ion dynamics in electron beam–plasma interaction: particle-in-cell simulations. Annales Geophysicae 32(8), 1025. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cairns, I.H.: 1989, Electrostatic wave generation above and below the plasma frequency by electron beams. Physics of Fluids B: Plasma Physics 1(1), 204. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cremades, H., Iglesias, F.A., St. Cyr, O.C., Xie, H., Kaiser, M.L., Gopalswamy, N.: 2015, Low-frequency type-II radio detections and coronagraph data employed to describe and forecast the propagation of 71 CMEs/shocks. Solar Physics 290(9), 2455. DOI. ADS.

    Article  ADS  Google Scholar 

  • Crosley, M.K., Osten, R.A., Broderick, J.W., Corbel, S., Eislöffel, J., Grießmeier, J.-M., van Leeuwen, J., Rowlinson, A., Zarka, P., Norman, C.: 2016, The search for signatures of transient mass loss in active stars. The Astrophysical Journal 830(1), 24. DOI.

    Article  ADS  Google Scholar 

  • Fried, B.D.: 1959, Mechanism for instability of transverse plasma waves. Physics of Fluids 2(3), 337. DOI.

    Article  ADS  Google Scholar 

  • Fried, B.D., Conte, S.D.: 1961, The Plasma Dispersion Function, Academic Press, New York.

    Google Scholar 

  • Fuselier, S.A., Gurnett, D.A., Fitzenreiter, R.J.: 1985, The downshift of electron plasma oscillations in the electron foreshock region. Journal of Geophysical Research 90(A5), 3935. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gaelzer, R., Yoon, P.H., Umeda, T., Omura, Y., Matsumoto, H.: 2003, Harmonic Langmuir waves. II. Turbulence spectrum. Physics of Plasmas 10(2), 373. DOI.

    Article  MathSciNet  ADS  Google Scholar 

  • Ganse, U., Kilian, P., Vainio, R., Spanier, F.: 2012, Emission of type II radio bursts – single-beam versus two-beam scenario. Solar Physics 280(2), 551. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gary, S.P.: 1985, Electrostatic instabilities in plasmas with two electron components. Journal of Geophysical Research: Space Physics 90(A9), 8213. DOI. ADS.

    Article  Google Scholar 

  • Gary, S.P.: 1993, Theory of Space Plasma Microinstabilities, Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge DOI.

    Book  Google Scholar 

  • Graham, D.B., Cairns, I.H.: 2015, The Langmuir waves associated with the 1 December 2013 type II burst. Journal of Geophysical Research: Space Physics 120(6), 4126. DOI.

    Article  ADS  Google Scholar 

  • Gurnett, D.A.: 1985, Plasma Waves and Instabilities, Am. Geophys. Union, Washington, 207. 9781118664179. DOI.

    Book  Google Scholar 

  • Henri, P., Sgattoni, A., Briand, C., Amiranoff, F., Riconda, C.: 2019, Electromagnetic simulations of solar radio emissions. Journal of Geophysical Research: Space Physics 124(3), 1475. DOI.

    Article  ADS  Google Scholar 

  • Jebaraj, I.C., Kouloumvakos, A., Magdalenic, J., Rouillard, A.P., Mann, G., Krupar, V., Poedts, S.: 2021, Generation of interplanetary type II radio emission. Astronomy and Astrophysics 654, A64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kasaba, Y., Matsumoto, H., Omura, Y.: 2001, One- and two-dimensional simulations of electron beam instability: generation of electrostatic and electromagnetic 2fp waves. Journal of Geophysical Research 106(A9), 18693. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lacombe, C., Mangeney, A., Harvey, C.C., Scudder, J.D.: 1985, Electron plasma waves upstream of the Earth’s bow shock. Journal of Geophysical Research: Space Physics 90(A1), 73. DOI.

    Article  Google Scholar 

  • Lazar, M., Fichtner, H. (eds.): 2021, Kappa Distributions; from Observational Evidences via Controversial Predictions to a Consistent Theory of Nonequilibrium Plasmas, Astrophysics and Space Science Library 464. DOI. ADS.

    Book  Google Scholar 

  • Lazar, M., Fichtner, H.: 2021b, Kappa distribution function: from empirical to physical concepts. In: Lazar, M., Fichtner, H. (eds.) Kappa Distributions; from Observational Evidences via Controversial Predictions to a Consistent Theory of Nonequilibrium Plasmas, Astrophysics and Space Science Library 464, 107. DOI. ADS.

    Chapter  Google Scholar 

  • Lazar, M., Fichtner, H., Yoon, P.H.: 2016, On the interpretation and applicability of \(\kappa\)-distributions. Astronomy and Astrophysics 589, A39. DOI.

    Article  ADS  Google Scholar 

  • Lazar, M., Poedts, S., Fichtner, H.: 2015, Destabilizing effects of the suprathermal populations in the solar wind. Astronomy and Astrophysics 582, A124. DOI.

    Article  ADS  Google Scholar 

  • Lazar, M., Schlickeiser, R., Shukla, P.K.: 2008, Cumulative effect of the Weibel-type instabilities in symmetric counterstreaming plasmas with kappa anisotropies. Physics of Plasmas 15(4), 042103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lazar, M., Schlickeiser, R., Wielebinski, R., Poedts, S.: 2009, Cosmological effects of Weibel-type instabilities. The Astrophysical Journal 693(2), 1133. DOI.

    Article  ADS  Google Scholar 

  • Lazar, M., Pomoell, J., Poedts, S., Dumitrache, C., Popescu, N.A.: 2014, Solar wind electron strahls associated with a high-latitude CME: Ulysses observations. Solar Physics 289(11), 4239. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lazar, M., Pierrard, V., Poedts, S., Fichtner, H.: 2020, Characteristics of solar wind suprathermal halo electrons. Astronomy and Astrophysics 642, A130. DOI.

    Article  ADS  Google Scholar 

  • Lazar, M., Shaaban, S.M., López, R.A., Poedts, S.: 2022a, About the effects of solar wind suprathermal electrons on electrostatic waves. Astrophysics and Space Science 367(10), 104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lazar, M., López, R.A., Shaaban, S.M., Poedts, S., Yoon, P.H., Fichtner, H.: 2022b, Temperature anisotropy instabilities stimulated by the solar wind suprathermal populations. Frontiers in Astronomy and Space Sciences 8, 249. DOI.

    Article  ADS  Google Scholar 

  • Lazar, M., López, R.A., Moya, P.S., Poedts, S., Shaaban, S.M.: 2023, The aperiodic firehose instability of counter-beaming electrons in space plasmas. Astronomy and Astrophysics 670, A85. DOI.

    Article  ADS  Google Scholar 

  • Lee, S.-Y., Ziebell, L.F., Yoon, P.H., Gaelzer, R., Lee, E.S.: 2019, Particle-in-cell and weak turbulence simulations of plasma emission. The Astrophysical Journal 871(1), 74. DOI.

    Article  ADS  Google Scholar 

  • Lee, S.-Y., Yoon, P.H., Lee, E., Tu, W.: 2022, Simulation of plasma emission in magnetized plasmas. The Astrophysical Journal 924(1), 36. DOI.

    Article  ADS  Google Scholar 

  • Lin, R.P.: 1997, Observations of the 3D distributions of thermal to near-relativistic electrons in the interplanetary medium by the wind spacecraft. In: Trottet, G. (ed.) Coronal Physics from Radio and Space Observations 483, 93. DOI.

    Chapter  Google Scholar 

  • Lin, R.P., Potter, D.W., Gurnett, D.A., Scarf, F.L.: 1981, Energetic electrons and plasma waves associated with a solar type III radio burst. The Astrophysical Journal 251, 364. DOI.

    Article  ADS  Google Scholar 

  • Lin, R.P., Levedahl, W.K., Lotko, W., Gurnett, D.A., Scarf, F.L.: 1986, Evidence for nonlinear wave-wave interactions in solar type III radio bursts. The Astrophysical Journal 308, 954. DOI.

    Article  ADS  Google Scholar 

  • Lobzin, V.V., Krasnoselskikh, V.V., Schwartz, S.J., Cairns, I., Lefebvre, B., Décréau, P., Fazakerley, A.: 2005, Generation of downshifted oscillations in the electron foreshock: a loss-cone instability. Geophysical Research Letters 32(18), L18101. DOI. ADS.

    Article  ADS  Google Scholar 

  • López, R.A., Lazar, M., Shaaban, S.M., Poedts, S., Moya, P.S.: 2020, Alternative high-plasma beta regimes of electron heat-flux instabilities in the solar wind. The Astrophysical Journal Letters 900(2), L25. DOI.

    Article  ADS  Google Scholar 

  • López, R.A., Shaaban, S.M., Lazar, M.: 2021, General dispersion properties of magnetized plasmas with drifting bi-Kappa distributions. DIS-K: dispersion solver for kappa plasmas. Journal of Plasma Physics 87(3), 905870310. DOI.

    Article  Google Scholar 

  • Maksimovic, M., Zouganelis, I., Chaufray, J.-Y., Issautier, K., Scime, E.E., Littleton, J.E., Marsch, E., McComas, D.J., Salem, C., Lin, R.P., Elliott, H.: 2005, Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. Journal of Geophysical Research: Space Physics 110, A09104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Manley, J.M., Rowe, H.E.: 1956, Some general properties of nonlinear elements-part I. general energy relations. Proceedings of the IRE 44(7), 904. DOI.

    Article  Google Scholar 

  • Mann, G., Breitling, F., Vocks, C., et al.: 2018, Tracking of an electron beam through the solar corona with LOFAR. Astronomy and Astrophysics 611, A57. DOI.

    Article  Google Scholar 

  • Matsumoto, H., Omura, Y. (eds.): 1993, Computer Space Plasma Physics: Simulation Techniques and Software, Terra Scientific Publishing Company, Tokyo.

    Google Scholar 

  • Micera, A., Zhukov, A.N., López, R.A., Innocenti, M.E., Lazar, M., Boella, E., Lapenta, G.: 2020, Particle-in-cell simulation of whistler heat-flux instabilities in the solar wind: heat-flux regulation and electron halo formation. The Astrophysical Journal Letters 903(1), L23. DOI.

    Article  ADS  Google Scholar 

  • Morosan, D.E., Carley, E.P., Hayes, L.A., Murray, S.A., Zucca, P., Fallows, R.A., McCauley, J., Kilpua, E.K.J., Mann, G., Vocks, C., Gallagher, P.T.: 2019, Multiple regions of shock-accelerated particles during a solar coronal mass ejection. Nature Astronomy 3, 452. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Viñas, A.F.: 2008, Solar wind electron distribution functions inside magnetic clouds. Journal of Geophysical Research: Space Physics 113(A2), A02105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Omura, Y., Matsumoto, H., Miyake, T., Kojima, H.: 1996, Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail. Journal of Geophysical Research: Space Physics 101(A2), 2685. DOI.

    Article  Google Scholar 

  • Onsager, T.G., Holzworth, R.H.: 1990, Measurement of the electron beam mode in Earth’s foreshock. Journal of Geophysical Research: Space Physics 95(A4), 4175. DOI.

    Article  Google Scholar 

  • Píša, D., Santolík, O., Hospodarsky, G.B., Kurth, W.S., Gurnett, D.A., Souček, J.: 2016, Spatial distribution of Langmuir waves observed upstream of Saturn’s bow shock by Cassini. Journal of Geophysical Research: Space Physics 121(8), 7771. DOI.

    Article  ADS  Google Scholar 

  • Pick, M., Vilmer, N.: 2008, Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection. The Astronomy and Astrophysics Review 16, 1. DOI.

    Article  ADS  Google Scholar 

  • Pierrard, V., Lazar, M.: 2010, Kappa distributions: theory and applications in space plasmas. Solar Physics 267, 153. DOI.

    Article  ADS  Google Scholar 

  • Pierrard, V., Lemaire, J.: 1996, Lorentzian ion exosphere model. Journal Geophysical Research: Space Physics 101(A4), 7923. DOI.

    Article  ADS  Google Scholar 

  • Pierrard, V., Lazar, M., Poedts, S., Štverák, Š., Maksimovic, M., Trávníček, P.M.: 2016, The electron temperature and anisotropy in the solar wind. Comparison of the core and halo populations. Solar Physics 291(7), 2165. DOI.

    Article  ADS  Google Scholar 

  • Pulupa, M., Bale, S.D.: 2008, Structure on interplanetary shock fronts: type II radio burst source regions. The Astrophysical Journal 676(2), 1330. DOI.

    Article  ADS  Google Scholar 

  • Pulupa, M.P., Bale, S.D., Kasper, J.C.: 2010, Langmuir waves upstream of interplanetary shocks: dependence on shock and plasma parameters. Journal of Geophysical Research: Space Physics 115(A4), A04106. DOI.

    Article  ADS  Google Scholar 

  • Ratcliffe, H., Brady, C.S., Che Rozenan, M.B., Nakariakov, V.M.: 2014, A comparison of weak-turbulence and particle-in-cell simulations of weak electron-beam plasma interaction. Physics of Plasmas 21(12), 122104. DOI.

    Article  ADS  Google Scholar 

  • Reid, H.A.S., Ratcliffe, H.: 2014, A review of solar type III radio bursts. Research in Astronomy and Astrophysics 14(7), 773. DOI.

    Article  ADS  Google Scholar 

  • Rhee, T., Ryu, C.-M., Woo, M., Kaang, H.H., Yi, S., Yoon, P.H.: 2009, Multiple harmonic plasma emission. The Astrophysical Journal 694(1), 618. DOI.

    Article  ADS  Google Scholar 

  • Scherer, K., Husidic, E., Lazar, M., Fichtner, H.: 2022, Revisiting Ulysses electron data with a triple fit of velocity distributions. Astronomy and Astrophysics 663, A67. DOI.

    Article  ADS  Google Scholar 

  • Scudder, J.D.: 1992, Why all stars should possess circumstellar temperature inversions. The Astrophysical Journal 398, 319. DOI.

    Article  ADS  Google Scholar 

  • Shaaban, S.M., Lazar, M., Poedts, S.: 2018b, Clarifying the solar wind heat flux instabilities. Monthly Notices of the Royal Astronomical Society 480(1), 310. DOI.

    Article  ADS  Google Scholar 

  • Shaaban, S.M., Lazar, M., Yoon, P.H., Poedts, S.: 2018a, Beaming electromagnetic (or heat-flux) instabilities from the interplay with the electron temperature anisotropies. Physics of Plasmas 25(8), 082105. DOI.

    Article  ADS  Google Scholar 

  • Shaaban, S.M., Lazar, M., Yoon, P.H., Poedts, S., López, R.A.: 2019, Quasi-linear approach of the whistler heat-flux instability in the solar wind. Monthly Notices of the Royal Astronomical Society 486(4), 4498. DOI.

    Article  ADS  Google Scholar 

  • Soucek, J., Píša, D., Santolík, O.: 2019, Direct measurement of low-energy electron foreshock beams. Journal of Geophysical Research: Space Physics 124(4), 2380. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stverak, S., Travnicek, P., Maksimovic, M., Marsch, E., Fazakerley, A.N., Scime, E.E.: 2008, Electron temperature anisotropy constraints in the solar wind. Journal of Geophysical Research: Space Physics 113(A3), A03103. DOI.

    Article  ADS  Google Scholar 

  • Thejappa, G.: 2022, Evidence for the three wave interactions in the vicinity of an interplanetary shock. The Astrophysical Journal 937(1), 28. DOI.

    Article  ADS  Google Scholar 

  • Thejappa, G., MacDowall, R.J., Bergamo, M.: 2012, In situ detection of strong Langmuir turbulence processes in solar type III radio bursts. Journal of Geophysical Research: Space Physics 117(A8), A08111. DOI.

    Article  ADS  Google Scholar 

  • Thurgood, J.O., Tsiklauri, D.: 2015, Self-consistent particle-in-cell simulations of fundamental and harmonic plasma radio emission mechanisms. Astronomy and Astrophysics 584, A83. DOI.

    Article  ADS  Google Scholar 

  • Vasyliunas, V.M.: 1968, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. Journal of Geophysical Research: Space Physics 73, 2839. DOI.

    Article  Google Scholar 

  • Verscharen, D., Chandran, B.D.G., Boella, E., et al.: 2022, Electron-driven instabilities in the solar wind. Frontiers in Astronomy and Space Sciences 9, 951628. DOI.

    Article  ADS  Google Scholar 

  • Villadsen, J., Hallinan, G.: 2019, Ultra-wideband detection of 22 coherent radio bursts on M dwarfs. The Astrophysical Journal 871(2), 214. DOI.

    Article  ADS  Google Scholar 

  • Weibel, E.S.: 1959, Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Physical Review Letters 2(3), 83. DOI.

    Article  ADS  Google Scholar 

  • Wilson, L.B., Chen, L.-J., Wang, S., Schwartz, S.J., Turner, D.L., Stevens, M.L., Kasper, J.C., Osmane, A., Caprioli, D., Bale, S.D., Pulupa, M.P., Salem, C.S., Goodrich, K.A.: 2019a, Electron energy partition across interplanetary shocks. I. Methodology and data product. The Astrophysical Journal Supplement Series 243(1), 8. DOI.

    Article  ADS  Google Scholar 

  • Wilson, L.B., Chen, L.-J., Wang, S., Schwartz, S.J., Turner, D.L., Stevens, M.L., Kasper, J.C., Osmane, A., Caprioli, D., Bale, S.D., Pulupa, M.P., Salem, C.S., Goodrich, K.A.: 2019b, Electron energy partition across interplanetary shocks. II. Statistics. The Astrophysical Journal Supplement Series 245(2), 24. DOI.

    Article  ADS  Google Scholar 

  • Yi, S., Yoon, P.H., Ryu, C.-M.: 2007, Multiple harmonic plasma emission. Physics of Plasmas 14(1), 013301. DOI.

    Article  ADS  Google Scholar 

  • Yoon, P.H., Gaelzer, R., Umeda, T., Omura, Y., Matsumoto, H.: 2003, Harmonic Langmuir waves. I. Nonlinear dispersion relation. Physics of Plasmas 10(2), 364. DOI.

    Article  MathSciNet  ADS  Google Scholar 

  • Ziebell, L.F., Petruzzellis, L.T., Yoon, P.H., Gaelzer, R., Pavan, J.: 2016, Plasma emission by counter-streaming electron beams. The Astrophysical Journal 818(1), 61. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Ruhr-University Bochum, the Katholieke Universiteit Leuven, and Mansoura University. These results were also obtained in the framework of the projects C14/19/089 (C1 project Internal Funds KU Leuven), G.0D07.19N (FWO-Vlaanderen), WEAVE project – G.0025.23N (FWO-Vlaanderen/DFG-Germany), SIDC Data Exploitation (ESA Prodex-12), Belspo project B2/191/P1/SWiM. R.A.L. acknowledges the support of ANID Chile through FONDECyT grant No. 11201048. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the conception and content of the work.

Corresponding author

Correspondence to M. Lazar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: 2D Spectra of EM Fields

Appendix: 2D Spectra of EM Fields

In Figure 11, we display the 2D spatial FFTs of the out-of-plane EM fields (color coded on the right side) as functions of both wave-numbers \(k_{x}\) and \(k_{y}\) in the simulation plane. By dashed contours we plot the fundamental (F) and second harmonic (H) emissions expected at \(\omega _{pe}\) and \(2\, \omega _{pe}\). Only the emissions obtained in case 1 approach these dashed lines, e.g., for \(k_{y} > 0\), whereas in case 3 the spectra show a significant down-shift in wave numbers and frequencies. These spectra can help to quantify the properties of radio emissions and to understand the nonlinear wave–wave interactions from which they originate.

We chose later snapshots, at \(\omega _{pe}t \simeq 450\) after the saturation of the ES instabilities, to differentiate between various fluctuating EM fields resulting from the nonlinear decay of the enhanced ES fluctuations. We can thus distinguish between radio emissions with a more or less isotropic distribution (\(k_{x,y} \ne 0\)), e.g., in cases 1 and 3, and the highly anisotropic EM waves with perpendicular propagation (\(k \simeq k_{y}\)), e.g., in cases 2 and 3. These late spectra appear dominated by the perpendicular emissions with very high intensities, especially for the case where the electrons are (initially) Kappa distributed. Thurgood and Tsiklauri (2015) discussed Weibel-like fluctuations with a major contribution to the energy density of nonlinear EM emissions. In our case, in the presence of the background magnetic field, we can associate these emissions with the ordinary mode (O-mode), which can be excited and powered by the filamentation (Weibel-like) instability of the electron beams.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazar, M., López, R.A., Poedts, S. et al. Kappa-Distributed Electrons in Solar Outflows: Beam-Plasma Instabilities and Radio Emissions. Sol Phys 298, 72 (2023). https://doi.org/10.1007/s11207-023-02159-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02159-w

Navigation