Skip to main content
Log in

Duration and Fluence of Major Solar Energetic Particle (SEP) Events

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

To understand solar energetic particle (SEP) events and their acceleration processes, it is important to study the SEP properties, e.g. duration and fluence. In this work, we analyzed the temporal evolution of fluxes [cm−2 sr−1 s−1] of >10, >30, and >60 MeV protons and the temporal and spectral evolution of electromagnetic-radiation components for 34 major SEP events that include 13 ground-level enhancement (GLE)-SEP and 21 non-GLE-SEP events, and then determined their possible onset and end times [UT], their duration [hours], and fluence [cm−2 sr−1]. It is observed that the temporal fluxes of >30 MeV protons can sometimes be utilized for those of the fluxes of >10 MeV protons. Correspondence between SEP duration and fluence demonstrates the dependence of fluence on duration that helps distinguish the typical and atypical SEP events. For instance, for the >10 MeV protons, correspondence between the duration and fluence exhibited a weaker correlation (\(r\approx \) 0.78; \(p\)<0.002) during the 13 GLE-SEPs than that (\(r \approx \) 0.83; \(p\)<0.0001) during the 21 non-GLE-SEPs, revealing a few GLE-SEPs with disproportionate comparability. During the 13 GLE-SEPs, correspondence between the SEP duration and fluence for >30 MeV protons exhibited a stronger correlation (\(r \approx \) 0.82; \(p\)<0.0006) than that (\(r \approx \) 0.78; \(p\)<0.002) for the >10 MeV protons, indicating that the temporal window of >30 MeV protons is sometimes more appropriate for obtaining a reasonable duration of SEPs. Accordingly, when the temporal window of flux of >30 MeV protons is utilized for that of the >10 MeV protons, the correlation increased significantly (\(r \approx \) 0.86; \(p\)<0.0002) during the 13 GLE-SEPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The data used in this study are available in the CDAW-NASA, GOES-NOAA, OMNI-NASA, and Wind-WAVES. Authors thank the science teams of the spacecraft for keeping the data available in the sites.

References

  • Alberti, T., Laurenza, M., Cliver, E.W., Storini, M., Consolini, G., Lepreti, F.: 2017, Solar activity from 2006 to 2014 and short-term forecasts of solar proton events using the ESPERTA model. Astrophys. J. 838, 59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Andriopoulou, M., Mavromichalaki, H., Plainaki, C., Belov, A., Eroshenko, E.: 2011, Intense ground-level enhancements of solar cosmic rays during the last solar cycles. Solar Phys. 269, 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2012, GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci. Rev. 171, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Freeland, S.L.: 2012, Automated solar flare statistics in soft X-rays over 37 years of GOES observations: The invariance of self-organized criticality during three solar cycles. Astrophys. J. 754, 112. DOI. ADS.

    Article  ADS  Google Scholar 

  • Balch, C.C.: 2008, Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6, S01001. DOI. ADS.

    Article  ADS  Google Scholar 

  • Belov, A.: 2009, Properties of solar X-ray flares and proton event forecasting. Adv. Space Res. 43, 467. DOI. ADS.

    Article  ADS  Google Scholar 

  • Belov, A., Garcia, H., Kurt, V., Mavromichalaki, H., Gerontidou, M.: 2005, Proton enhancements and their relation to the X-ray flares during the three last solar cycles. Solar Phys. 229, 135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bieber, J.W., Clem, J., Evenson, P., Pyle, R., Ruffolo, D., Sáiz, A.: 2005, Relativistic solar neutrons and protons on 28 October 2003. Geophys. Res. Lett. 32, L03S02. DOI. ADS.

    Article  Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cane, H.V., Lario, D.: 2006, An introduction to CMEs and energetic particles. Space Sci. Rev. 123, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 2010, A study of solar energetic particle events of 1997-2006: Their composition and associations. J. Geophys. Res. 115, A08101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chertok, I.M., Grechnev, V.V., Meshalkina, N.S.: 2009, On the correlation between spectra of solar microwave bursts and proton fluxes near the Earth. Astron. Rep. 53, 1059. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chilingarian, A.: 2009, Statistical study of the detection of solar protons of highest energies at 20 January 2005. Adv. Space Res. 43, 702. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cliver, E.W.: 2000, Solar flare photons and energetic particles in space. In: Mewaldt, R.A., Jokipii, J.R., Lee, M.A., Möbius, E., Zurbuchen, T.H. (eds.) Acceleration and Transport of Energetic Particles Observed in the Heliosphere, CS-528, AIP, Melville, 21. DOI. ADS.

    Chapter  Google Scholar 

  • Cliver, E.W.: 2016, Flare vs. shock acceleration of high-energy protons in solar energetic particle events. Astrophys. J. 832, 128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Kahler, S.W., Reames, D.V.: 2004, Coronal shocks and solar energetic proton events. Astrophys. J. 605, 902. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cohen, C.M.S., Mewaldt, R.A., Leske, R.A., Cummings, A.C., Stone, E.C., Wiedenbeck, M.E., Christian, E.R., von Rosenvinge, T.T.: 1999, New observations of heavy-ion-rich solar particle events from ACE. Geophys. Res. Lett. 26, 2697. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cohen, C.M.S., Stone, E.C., Mewaldt, R.A., Leske, R.A., Cummings, A.C., Mason, G.M., Desai, M.I., von Rosenvinge, T.T., Wiedenbeck, M.E.: 2005, Heavy ion abundances and spectra from the large solar energetic particle events of October-November 2003. J. Geophys. Res. 110, A09S16. DOI. ADS.

    Article  Google Scholar 

  • Dai, Y., Tang, Y.H., Qiu, K.P.: 2005, Prompt solar energetic particles with large-scale cross-disk coronal disturbance. In: Dere, K., Wang, J., Yan, Y. (eds.) Coronal and Stellar Mass Ejections, IAU Sympos. 226, Cambridge Univ. Press, Cambridge, UK, 374. DOI. ADS.

    Chapter  Google Scholar 

  • Dalla, S.: 2003, Multi-spacecraft observations of decay phases of SEP events. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten, American Institute of Physics Conference Series 679, 660. DOI. ADS.

    Chapter  Google Scholar 

  • Desai, M.I., Burgess, D.: 2008, Particle acceleration at coronal mass ejection-driven interplanetary shocks and the Earth’s bow shock. J. Geophys. Res. 113, A00B06. DOI. ADS.

    Article  ADS  Google Scholar 

  • Desai, M., Giacalone, J.: 2016, Large gradual solar energetic particle events. Liv. Rev. Solar Phys. 13, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Relationship between solar energetic particles and properties of flares and CMEs: Statistical analysis of solar cycle 23 events. Solar Phys. 290, 841. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dorman, L.: 2006, Cosmic Ray Interactions, Propagation, and Acceleration in Space Plasmas, Astrophys. Space Sci. Lib. 339. ADS.

    Book  Google Scholar 

  • Firoz, K.A., Kumar, D.V.P., Cho, K.-S.: 2010, On the relationship of cosmic ray intensity with solar, interplanetary, and geophysical parameters. Astrophys. Space Sci. 325, 185. DOI. ADS.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Cho, K.-S., Hwang, J., Phani Kumar, D.V., Lee, J.J., Oh, S.Y., Kaushik, S.C., Kudela, K., Rybanský, M., Dorman, L.I.: 2010, Characteristics of ground-level enhancement-associated solar flares, coronal mass ejections, and solar energetic particles. J. Geophys. Res. 115, A09105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Zhang, Q.M., Gan, W.Q., Li, Y.P., Rodríguez-Pacheco, J., Moon, Y.-J., Kudela, K., Park, Y.-D., Dorman, L.I.: 2014, An interpretation of GLE71 concurrent CME-driven shock wave. Astrophys. J. Suppl. 213, 24. DOI. ADS.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Gan, W.Q., Li, Y.P., Rodríguez-Pacheco, J., Kudela, K.: 2019a, On the possible mechanism of GLE initiation. Astrophys. J. 872, 178. DOI. ADS.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Gan, W.Q., Moon, Y.-J., Rodríguez-Pacheco, J., Li, Y.P.: 2019b, On the relation between flare and CME during GLE-SEP and non-GLE-SEP events. Astrophys. J. 883, 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Garcia, H.A.: 2004, Forecasting methods for occurrence and magnitude of proton storms with solar hard X rays. Space Weather 2, S06003. DOI. ADS.

    Article  ADS  Google Scholar 

  • García-Rigo, A., Núñez, M., Qahwaji, R., Ashamari, O., Jiggens, P., Pérez, G., Hernández-Pajares, M., Hilgers, A.: 2016, Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations. J. Space Weather Space Clim. 6, A28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gómez-Herrero, R., Dresing, N., Klassen, A., Heber, B., Lario, D., Agueda, N., Malandraki, O.E., Blanco, J.J., Rodríguez-Pacheco, J., Banjac, S.: 2015, Circumsolar energetic particle distribution on 2011 November 3. Astrophys. J. 799, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Akiyama, S., Yashiro, S., Xie, H., Thakur, N., Kahler, S.W.: 2015, Large solar energetic particle events associated with filament eruptions outside of active regions. Astrophys. J. 806, 8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kochanov, A.A.: 2016, The 26 December 2001 solar event responsible for GLE63. I. Observations of a major long-duration flare with the Siberian solar radio telescope. Solar Phys. 291, 3705. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kuzmenko, I.V.: 2020, A geoeffective CME caused by the eruption of a quiescent prominence on 29 September 2013. Solar Phys. 295, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Chertok, I.M., Slemzin, V.A., Kuzin, S.V., Ignat’ev, A.P., Pertsov, A.A., Zhitnik, I.A., Delaboudinière, J.-P., Auchère, F.: 2005, CORONAS-F/SPIRIT EUV observations of October-November 2003 solar eruptive events in combination with SOHO/EIT data. J. Geophys. Res. 110, A09S07. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kurt, V.G., Chertok, I.M., Uralov, A.M., Nakajima, H., Altyntsev, A.T., Belov, A.V., Yushkov, B.Y., Kuznetsov, S.N., Kashapova, L.K., Meshalkina, N.S., Prestage, N.P.: 2008, An extreme solar event of 20 January 2005: Properties of the flare and the origin of energetic particles. Solar Phys. 252, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Chertok, I.M., Kuzmenko, I.V., Afanasyev, A.N., Meshalkina, N.S., Kalashnikov, S.S., Kubo, Y.: 2011, Coronal shock waves, EUV waves, and their relation to CMEs. I. Reconciliation of “EIT waves”, type II radio bursts, and leading edges of CMEs. Solar Phys. 273, 433. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Meshalkina, N.S., Chertok, I.M.: 2015, Relations between microwave bursts and near-Earth high-energy proton enhancements and their origin. Solar Phys. 290, 2827. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Klein, K.-L., Kochanov, A.A.: 2017, The 26 December 2001 solar eruptive event responsible for GLE63: III. CME, shock waves, and energetic particles. Solar Phys. 292, 102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haggerty, D.K., Roelof, E.C.: 2002, Impulsive near-relativistic solar electron events: Delayed injection with respect to solar electromagnetic emission. Astrophys. J. 579, 841. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 2005, Characteristic times of gradual solar energetic particle events and their dependence on associated coronal mass ejection properties. Astrophys. J. 628, 1014. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kecskemety, K., Daibog, E.I., Kahler, S., Logachev, Y.I.: 2003, Some statistical properties of the decay phase of SEP-events. In: Kajita, T., Asaoka, Y., Kawachi, A., Matsubara, Y., Sasaki, M. (eds.) Proc. 28th Internat. Cosmic Ray Conf. (ICRC2003: Tsukuba) 6, Universal Academy Press, Tokyo, 3503. ADS.

    Google Scholar 

  • Kecskeméty, K., Daibog, E.I., Logachev, Y.I., Kóta, J.: 2009, The decay phase of solar energetic particle events. J. Geophys. Res. 114, A06102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Olspert, N., Grigorievskiy, A., Käpylä, M.J., Tanskanen, E.I., Miyahara, H., Kataoka, R., Pelt, J., Liu, Y.D.: 2015, Statistical study of strong and extreme geomagnetic disturbances and solar cycle characteristics. Astrophys. J. 806, 272. DOI. ADS.

    Article  ADS  Google Scholar 

  • King, J.H., Papitashvili, N.E.: 2005, Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kocharov, L., Torsti, J.: 2002, Hybrid solar energetic particle events observed on board soho. Solar Phys. 207, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kocharov, L., Torsti, J., Laitinen, T., Teittinen, M.: 1999, Post-impulsive-phase acceleration in a wide range of solar longitudes. Solar Phys. 190, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kozyreva, O.V., Kleimenova, N.G., Kornilova, T.A., Kauriste, K., Manninen, J., Ranta, A.: 2006, Unusual spatial-temporal dynamics of geomagnetic disturbances during the main phase of the extremely strong magnetic storm of November 7-8, 2004. Geomagn. Aeron. 46, 580. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lario, D., Aran, A., Decker, R.B.: 2008, Major solar energetic particle events of solar cycles 22 and 23: Intensities above the streaming limit. Space Weather 6, S12001. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lario, D., Aran, A., Gómez-Herrero, R., Dresing, N., Heber, B., Ho, G.C., Decker, R.B., Roelof, E.C.: 2013, Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. Astrophys. J. 767, 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Laurenza, M., Cliver, E.W., Hewitt, J., Storini, M., Ling, A.G., Balch, C.C., Kaiser, M.L.: 2009, A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7, S04008. DOI. ADS.

    Article  ADS  Google Scholar 

  • Magee, L.: 1990, R2 measures based on Wald and likelihood ratio joint significance tests. Am. Stat. 48, 113. DOI.

    Article  Google Scholar 

  • Malandraki, O.E., Crosby, N.B.: 2018a, Solar energetic particles and space weather: Science and applications. In: Malandraki, O.E., Crosby, N.B. (eds.) Solar Particle Radiation Storms Forecasting and Analysis, Astrophys. Space Sci. Lib. 444, Springer, Cham, 1. DOI. ADS.

    Chapter  Google Scholar 

  • Malandraki, O.E., Crosby, N.B.: 2018b, The HESPERIA HORIZON 2020 project and book on solar particle radiation storms forecasting and analysis. Space Weather 16, 591. DOI.

    Article  ADS  Google Scholar 

  • Mason, G.M., Desai, M.I., Cohen, C.M.S., Mewaldt, R.A., Stone, E.C., Dwyer, J.R.: 2006, The role of interplanetary scattering in western hemisphere large solar energetic particle events. Astrophys. J. Lett. 647, L65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mewaldt, R.A., Looper, M.D., Cohen, C.M.S., Haggerty, D.K., Labrador, A.W., Leske, R.A., Mason, G.M., Mazur, J.E., von Rosenvinge, T.T.: 2012, Energy spectra, composition, and other properties of ground-level events during solar cycle 23. Space Sci. Rev. 171, 97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moore, D.: 2006, Basic Practice of Statistics 4th edn. Freeman, New York. ISBN: 0-7167-7462-1.

    Google Scholar 

  • Oh, S.Y., Yi, Y., Bieber, J.W., Evenson, P., Kim, Y.K.: 2010, Characteristics of solar proton events associated with ground level enhancements. J. Geophys. Res. 115, A10107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Papaioannou, A., Sandberg, I., Anastasiadis, A., Kouloumvakos, A., Georgoulis, M.K., Tziotziou, K., Tsiropoula, G., Jiggens, P., Hilgers, A.: 2016, Solar flares, coronal mass ejections and solar energetic particle event characteristics. J. Space Weather Space Clim. 6, A42. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pomoell, J., Aran, A., Jacobs, C., Rodríguez-Gasén, R., Poedts, S., Sanahuja, B.: 2015, Modelling large solar proton events with the shock-and-particle model. Extraction of the characteristics of the MHD shock front at the cobpoint. J. Space Weather Space Clim. 5, A12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rodriguez, J.V., Sandberg, I., Mewaldt, R.A., Daglis, I.A., Jiggens, P.: 2017, Validation of the effect of cross-calibrated GOES solar proton effective energies on derived integral fluxes by comparison with STEREO observations. Space Weather 15, 290. DOI.

    Article  ADS  Google Scholar 

  • Ryabko, B.Y., Stognienko, V.S., Shokin, Y.I.: 2004, A new test for randomness and its application to some cryptographic problems. J. Stat. Plan. Inference 123, 365. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Sandberg, I., Jiggens, P., Heynderickx, D., Daglis, I.A.: 2014, Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys. Res. Lett. 41, 4435. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sarris, E.T., Malandraki, O.E.: 2003, Dependence of the decay phase of solar energetic electron events on the large-scale IMF structure: ACE observations. Geophys. Res. Lett. 30, 2079. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shanmugaraju, A., Prasanna Subramanian, S.: 2014, Interacting CMEs and their associated flare and SEP activities. Astrophys. Space Sci. 352, 385. DOI. ADS.

    Article  ADS  Google Scholar 

  • Simnett, G.M.: 2006, The timing of relativistic proton acceleration in the 20 January 2005 flare. Astron. Astrophys. 445, 715. DOI. ADS.

    Article  ADS  Google Scholar 

  • Smart, D.F., Shea, M.A., Spence, H.E., Kepko, L.: 2006, Two groups of extremely large >30 MeV solar proton fluence events. Adv. Space Res. 37, 1734. DOI. ADS.

    Article  ADS  Google Scholar 

  • Souvatzoglou, G., Papaioannou, A., Mavromichalaki, H., Dimitroulakos, J., Sarlanis, C.: 2014, Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: Introducing GLE Alert Plus. Space Weather 12, 633. DOI.

    Article  ADS  Google Scholar 

  • Tan, L.C., Malandraki, O.E., Reames, D.V., Ng, C.K., Wang, L., Dorrian, G.: 2012, Use of incident and reflected solar particle beams to trace the topology of magnetic clouds. Astrophys. J. 750, 146. DOI. ADS.

    Article  ADS  Google Scholar 

  • Trichtchenko, L., Zhukov, A., van der Linden, R., Stankov, S.M., Jakowski, N., Stanisławska, I., Juchnikowski, G., Wilkinson, P., Patterson, G., Thomson, A.W.P.: 2007, November 2004 space weather events: Real-time observations and forecasts. Space Weather 5, S06001. DOI.

    Article  ADS  Google Scholar 

  • Trottet, G., Samwel, S., Klein, K.-L., Dudok de Wit, T., Miteva, R.: 2015, Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Solar Phys. 290, 819. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vashenyuk, E.V., Balabin, Y.V., Gvozdevsky, B.B., Miroshnichenko, L.I., Klein, K.L., Trottet, G., Lantos, P.: 2005, Energetic solar particle dynamics during 28 October, 2003 GLE. In: Acharya, B.S., Gupta, S., Jagadeesan, P., Jain, A., Karthikeyan, S., Morris, S., Tonwar, S. (eds.) 29th International Cosmic Ray Conference (ICRC29: Pune), 1, Tata Institute of Fundamental Research, Mumbai, 217. ADS.

    Google Scholar 

  • Velinov, P.: 2017, Extended categorisation of ground level enhancements (GLEs) of cosmic rays due to relativistic solar energetic particles. Aerosp. Res. Bulg. 28, 5. ADS.

    Google Scholar 

  • Velinov, P.I.Y., Mishev, A.: 2019, Ionization effect in atmosphere during several Halloween GLE events of October-November 2003. In: Desiati, P. (ed.) 36th International Cosmic Ray Conference (ICRC2019: Madison), SISSA, Trieste, 1167. ADS.

    Google Scholar 

  • Verkhoglyadova, O.P., Li, G., Ao, X., Zank, G.P.: 2012, Radial dependence of peak proton and iron ion fluxes in solar energetic particle events: Application of the PATH code. Astrophys. J. 757, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veselovsky, I.S., Panasyuk, M.I., Avdyushin, S.I., Bazilevskaya, G.A., Belov, A.V., Bogachev, S.A., Bogod, V.M., Bogomolov, A.V., Bothmer, V., Boyarchuk, K.A., Vashenyuk, E.V., Vlasov, V.I., Gnezdilov, A.A., Gorgutsa, R.V., Grechnev, V.V., Denisov, Y.I., Dmitriev, A.V., Dryer, M., Yermolaev, Y.I., Eroshenko, E.A., Zherebtsov, G.A., Zhitnik, I.A., Zhukov, A.N., Zastenker, G.N., Zelenyi, L.M., Zeldovich, M.A., Ivanov-Kholodnyi, G.S., Ignat’ev, A.P., Ishkov, V.N., Kolomiytsev, O.P., Krasheninnikov, I.A., Kudela, K., Kuzhevsky, B.M., Kuzin, S.V., Kuznetsov, V.D., Kuznetsov, S.N., Kurt, V.G., Lazutin, L.L., Leshchenko, L.N., Litvak, M.L., Logachev, Y.I., Lawrence, G.: 2004, Solar and heliospheric phenomena in October-November 2003: Causes and effects. Cosm. Res. 42, 435. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xie, H., Mäkelä, P., Gopalswamy, N., St. Cyr, O.C.: 2016, Energy dependence of SEP electron and proton onset times. J. Geophys. Res. 121, 6168. DOI. ADS.

    Article  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yermolaev, Y.I., Zelenyi, L.M., Kuznetsov, V.D., Chertok, I.M., Panasyuk, M.I., Myagkova, I.N., Zhitnik, I.A., Kuzin, S.V., Eselevich, V.G., Bogod, V.M., Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Y.D.: 2008, Magnetic storm of November, 2004: Solar, interplanetary, and magnetospheric disturbances. J. Atmos. Solar-Terr. Phys. 70, 334. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Temmer, M., Gopalswamy, N., Malandraki, O., Nitta, N.V., Patsourakos, S., Shen, F., Vršnak, B., Wang, Y., Webb, D., Desai, M.I., Dissauer, K., Dresing, N., Dumbović, M., Feng, X., Heinemann, S.G., Laurenza, M., Lugaz, N., Zhuang, B.: 2021, Earth-affecting solar transients: A review of progresses in solar cycle 24. Prog. Earth Planet. Sci. 8, 56. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewer for constructive comments and valuable suggestions that indeed developed the article significantly. Some discussions with Victor Grechnev (ISTP/RAS) on the difference between GLE-SEPs and non-GLE-SEPs, and particularly on the equations for longitude-corrected SEP fluence, are acknowledged.

Funding

W.Q. Gan acknowledges the National Natural Science Foundation of China (U1731241, 11921003, and U1931138) and by the Chinese Academy of Sciences (XDA15052200). J. Rodríguez-Pacheco acknowledges the Spanish AEI project with reference: PID2019-104863RB-I00/AEI/10.13039/501100011033.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors have made contributions to this article, critically revised and approved the final version, and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Kazi A. Firoz.

Ethics declarations

Conflict of Interest

The authors declared that the research was conducted in the absence of any commercial or financial relationships.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firoz, K.A., Gan, W.Q., Li, Y.P. et al. Duration and Fluence of Major Solar Energetic Particle (SEP) Events. Sol Phys 297, 71 (2022). https://doi.org/10.1007/s11207-022-01994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-01994-7

Keywords

Navigation