Skip to main content
Log in

Two-Stage Evolution of an Extended C-Class Eruptive Flaring Activity from Sigmoid Active Region NOAA 12734: SDO and Udaipur-CALLISTO Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this article, we present a multi-wavelength investigation of a C-class flaring activity that occurred in the active region NOAA 12734 on 8 March 2019. The investigation utilizes data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) and the Udaipur-CALLISTO solar radio spectrograph of the Physical Research Laboratory. This low intensity C1.3 event is characterized by typical features of a long-duration event (LDE), viz. extended flare arcade, large-scale two-ribbon structures and twin coronal dimmings. The eruptive event occurred in a coronal sigmoid and displayed two distinct stages of energy release, manifested in terms of temporal and spatial evolution. The formation of twin-dimming regions are consistent with the eruption of a large flux rope with footpoints lying in the western and eastern edges of the coronal sigmoid. The metric radio observations obtained from Udaipur-CALLISTO reveals a broad-band (\(\approx50\,\text{--}\,180~\text{MHz}\)), stationary plasma emission for \(\approx7~\text{min}\) during the second stage of the flaring activity that resemble a type IV radio burst. A type III decametre-hectometre radio bursts with starting frequency of \(\approx2.5~\text{MHz}\) precedes the stationary type IV burst observed by Udaipur-CALLISTO by \(\approx5~\text{min}\). The synthesis of multi-wavelength observations and non-linear force-free field (NLFFF) coronal modeling together with magnetic decay index analysis suggest that the sigmoid flux rope underwent a zipping-like uprooting from its western to eastern footpoints in response to the overlying asymmetric magnetic field confinement. The asymmetrical eruption of the flux rope also accounts for the observed large-scale structures viz. apparent eastward shift of flare ribbons and post-flare loops along the polarity inversion line (PIL), and provides evidence for lateral progression of magnetic reconnection site as the eruption proceeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Notes

  1. At a distance of 1 AU, an angular diameter of 1 arcsec represents \(\approx0.725~\text{Mm}\) on the Sun. As a standard assumption, this conversion factor is uniformly applied across the whole magnetogram.

  2. See https://www.prl.res.in/~ecallisto/.

References

  • Alvarez, H., Haddock, F.T.: 1973, Decay time of type III solar bursts observed at kilometric wavelengths. Solar Phys. 30(1), 175. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benz, A.O.: 2017, Flare observations. Living Rev. Solar Phys. 14(1), 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benz, A.O., Monstein, C., Meyer, H., Manoharan, P.K., Ramesh, R., Altyntsev, A., Lara, A., Paez, J., Cho, K.-S.: 2009, A world-wide net of solar radio spectrometers: e-CALLISTO. Earth Moon Planets 104(1 – 4), 277. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, WAVES: the radio and plasma wave investigation on the WIND spacecraft. Space Sci. Rev. 71(1 – 4), 231. DOI. ADS.

    Article  ADS  Google Scholar 

  • Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26(6), 627. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandra, R., Schmieder, B., Aulanier, G., Malherbe, J.M.: 2009, Evidence of magnetic helicity in emerging flux and associated flare. Solar Phys. 258(1), 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Ding, M.D., Zhang, J., Sun, X.D., Guo, Y., Wang, Y.M., Kliem, B., Deng, Y.Y.: 2014a, Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520. Astrophys. J. 789(2), 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Ding, M.D., Zhang, J., Srivastava, A.K., Guo, Y., Chen, P.F., Sun, J.Q.: 2014b, On the relationship between a hot-channel-like solar magnetic flux rope and its embedded prominence. Astrophys. J. Lett. 789(2), L35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Clyne, J., Mininni, P., Norton, A., Rast, M.: 2007, Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys. 9(8), 301. DOI. ADS.

    Article  ADS  Google Scholar 

  • Czaykowska, A., Alexander, D., De Pontieu, B.: 2001, Chromospheric heating in the late phase of two-ribbon flares. Astrophys. J. 552(2), 849. DOI. ADS.

    Article  ADS  Google Scholar 

  • Czaykowska, A., De Pontieu, B., Alexander, D., Rank, G.: 1999, Evidence for chromospheric evaporation in the late gradual flare phase from SOHO/CDS observations. Astrophys. J. Lett. 521(1), L75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Démoulin, P., Aulanier, G.: 2010, Criteria for flux rope eruption: non-equilibrium versus torus instability. Astrophys. J. 718(2), 1388. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dissauer, K., Veronig, A.M., Temmer, M., Podladchikova, T., Vanninathan, K.: 2018, Statistics of coronal dimmings associated with coronal mass ejections. I. Characteristic dimming properties and flare association. Astrophys. J. 863(2), 169. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fletcher, L., Hudson, H.: 2001, The magnetic structure and generation of EUV flare ribbons. Solar Phys. 204, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q.: 2011, An observational overview of solar flares. Space Sci. Rev. 159(1 – 4), 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Glover, A., Ranns, N.D.R., Harra, L.K., Culhane, J.L.: 2000, The onset and association of CMEs with sigmoidal active regions. Geophys. Res. Lett. 27(14), 2161. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hudson, H.S., Acton, L.W., Freeland, S.L.: 1996, A long-duration solar flare with mass ejection and global consequences. Astrophys. J. 470, 629. DOI. ADS.

    Article  ADS  Google Scholar 

  • Inoue, S., Shiota, D., Bamba, Y., Park, S.-H.: 2018, Magnetohydrodynamic modeling of a solar eruption associated with an X9.3 flare observed in the active region 12673. Astrophys. J. 867(1), 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Isobe, H., Yokoyama, T., Shimojo, M., Morimoto, T., Kozu, H., Eto, S., Narukage, N., Shibata, K.: 2002, Reconnection rate in the decay phase of a long duration event flare on 1997 May 12. Astrophys. J. 566(1), 528. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, N.C., Joshi, B., Mitra, P.K.: 2021, Evolutionary stages and triggering process of a complex eruptive flare with circular and parallel ribbons. Mon. Not. Roy. Astron. Soc. 501(4), 4703. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Veronig, A., Cho, K.-S., Bong, S.-C., Somov, B.V., Moon, Y.-J., Lee, J., Manoharan, P.K., Kim, Y.-H.: 2009, Magnetic reconnection during the two-phase evolution of a solar eruptive flare. Astrophys. J. 706(2), 1438. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Veronig, A., Manoharan, P.K., Somov, B.V.: 2012, Signatures of magnetic reconnection in solar eruptive flares: a multi-wavelength perspective. Astrophys. Space Sci. Proc. 33, 29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Kushwaha, U., Veronig, A.M., Dhara, S.K., Shanmugaraju, A., Moon, Y.-J.: 2017a, Formation and eruption of a flux rope from the sigmoid active region NOAA 11719 and associated M6.5 flare: a multi-wavelength study. Astrophys. J. 834, 42. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Thalmann, J.K., Mitra, P.K., Chandra, R., Veronig, A.M.: 2017b, Observational and model analysis of a two-ribbon flare possibly induced by a neighboring blowout jet. Astrophys. J. 851(1), 29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Ibrahim, M.S., Shanmugaraju, A., Chakrabarty, D.: 2018, A major geoeffective CME from NOAA 12371: initiation, CME-CME interactions, and interplanetary consequences. Solar Phys. 293(7), 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, N.C., Zhu, X., Schmieder, B., Aulanier, G., Janvier, M., Joshi, B., Magara, T., Chandra, R., Inoue, S.: 2019, Generalization of the magnetic field configuration of typical and atypical confined flares. Astrophys. J. 871(2), 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kushwaha, U., Joshi, B., Cho, K.-S., Veronig, A., Tiwari, S.K., Mathew, S.K.: 2014, Impulsive energy release and non-thermal emission in a confined M4.0 flare triggered by rapidly evolving magnetic structures. Astrophys. J. 791(1), 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kushwaha, U., Joshi, B., Veronig, A.M., Moon, Y.-J.: 2015, Large-scale contraction and subsequent disruption of coronal loops during various phases of the M6.2 flare associated with the confined flux rope eruption. Astrophys. J. 807(1), 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • LaBelle, J., Treumann, R.A., Yoon, P.H., Karlicky, M.: 2003, A model of zebra emission in solar type IV radio bursts. Astrophys. J. 593(2), 1195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 au. Solar Phys. 183(1), 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275(1 – 2), 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R., Alexander, D., Gilbert, H.R.: 2009, Asymmetric eruptive filaments. Astrophys. J. 691(2), 1079. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, C., Lee, J., Yurchyshyn, V., Deng, N., Cho, K.-s., Karlický, M., Wang, H.: 2007, The eruption from a sigmoidal solar active region on 2005 May 13. Astrophys. J. 669(2), 1372. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, H., Chen, Y., Cho, K., Feng, S., Vasanth, V., Koval, A., Du, G., Wu, Z., Li, C.: 2018, A solar stationary type IV radio burst and its radiation mechanism. Solar Phys. 293(4), 58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Nakwacki, M.S., Attrill, G., van Driel-Gesztelyi, L., Démoulin, P., Dasso, S., Elliott, H.: 2007, Are CME-related dimmings always a simple signature of interplanetary magnetic cloud footpoints? Solar Phys. 244(1 – 2), 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Manoharan, P.K., van Driel-Gesztelyi, L., Pick, M., Démoulin, P.: 1996, Evidence for large-scale solar magnetic reconnection from radio and X-ray measurements. Astrophys. J. Lett. 468, L73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Masuda, S., Kosugi, T., Hudson, H.S.: 2001, A hard X-ray two-ribbon flare observed with Yohkoh/HXT. Solar Phys. 204, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mitra, P.K., Joshi, B.: 2019, Preflare processes, flux rope activation, large-scale eruption, and associated X-class flare from the active region NOAA 11875. Astrophys. J. 884(1), 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mitra, P.K., Joshi, B.: 2021, Successive occurrences of quasi-circular ribbon flares in a fan-spine-like configuration involving hyperbolic flux tube. Mon. Not. Roy. Astron. Soc. DOI. ADS.

    Article  Google Scholar 

  • Mitra, P.K., Joshi, B., Prasad, A.: 2020, Identification of pre-flare processes and their possible role in driving a large-scale flux rope eruption with complex M-class flare in the active region NOAA 12371. Solar Phys. 295(2), 29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mitra, P.K., Joshi, B., Prasad, A., Veronig, A.M., Bhattacharyya, R.: 2018, Successive flux rope eruptions from \(\delta\)-sunspots region of NOAA 12673 and associated X-class eruptive flares on 2017 September 6. Astrophys. J. 869(1), 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mitra, P.K., Joshi, B., Veronig, A.M., Chandra, R., Dissauer, K., Wiegelmann, T.: 2020, Eruptive-impulsive homologous M-class flares associated with double-decker flux rope configuration in minisigmoid of NOAA 12673. Astrophys. J. 900(1), 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Newkirk, G. Jr.: 1961, The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ning, H., Chen, Y., Wu, Z., Su, Y., Tian, H., Li, G., Du, G., Song, H.: 2018, Two-stage energy release process of a confined flare with double HXR peaks. Astrophys. J. 854(2), 178. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pallavicini, R., Serio, S., Vaiana, G.S.: 1977, A survey of soft X-ray limb flare images: the relation between their structure in the corona and other physical parameters. Astrophys. J. 216, 108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275(1 – 2), 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pevtsov, A.A.: 2002, Active-region filaments and X-ray sigmoids. Solar Phys. 207(1), 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pick, M.: 1986, Observations of radio continua and terminology. Solar Phys. 104(1), 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10(4), 313. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, L199. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sahu, S., joshi, B., Mitra, P.K., Veronig, A.M., Yurchyshyn, V.: 2020, Hard X-ray emission from an activated flux rope and subsequent evolution of an eruptive long-duration solar flare. Astrophys. J. 897(2), 157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sasikumar Raja, K., Ramesh, R., Hariharan, K., Kathiravan, C., Wang, T.J.: 2014, An estimate of the magnetic field strength associated with a solar coronal mass ejection from low frequency radio observations. Astrophys. J. 796(1), 56. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275(1 – 2), 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Living Rev. Solar Phys. 8(1), 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Upadhyay, K., Joshi, B., Mitra, P.K., Bhattacharyya, R., Oberoi, D., Monstein, C.: 2019, Solar radio observation using CALLISTO at the USO/PRL, Udaipur. In: 2019 IEEE MTT-S International Microwave and RF Conference (IMARC), 1. DOI.

    Chapter  Google Scholar 

  • Vrsnak, B.: 2003, In: Klein, L. (ed.) Magnetic 3-D Configurations of Energy Release in Solar Flares 612, 28. ADS.

    Google Scholar 

  • Warren, H.P., Warshall, A.D.: 2001, Ultraviolet flare ribbon brightenings and the onset of hard X-ray emission. Astrophys. J. Lett. 560(1), L87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Webb, D.F., Lepping, R.P., Burlaga, L.F., DeForest, C.E., Larson, D.E., Martin, S.F., Plunkett, S.P., Rust, D.M.: 2000, The origin and development of the May 1997 magnetic cloud. J. Geophys. Res. 105(A12), 27251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Inhester, B.: 2010, How to deal with measurement errors and lacking data in nonlinear force-free coronal magnetic field modelling? Astron. Astrophys. 516, A107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Thalmann, J.K., Inhester, B., Tadesse, T., Sun, X., Hoeksema, J.T.: 2012, How should one optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms? Solar Phys. 281(1), 37. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Anil Bhardwaj, Director, Physical Research Laboratory, Ahmedahad, India for his encouragement and support toward CALLISTO project at USO/PRL. We also sincerely thank Dr. Yashwant Gupta, Centre Director, NCRA-TIFR, Pune, India for providing technical expertise and facilities to fabricate the LPDA. We thank the SDO and GOES teams for their open data policy. SDO is NASA’s missions under the Living With a Star (LWS) program. We also thank FHNW, Institute for Data Science in Brugg/Windisch, Switzerland for hosting the e-Callisto network. DO acknowledges support of the Department of Atomic Energy, Government of India, under the project no. 12-R&D-TFR-5.02-0700. We thank Dr. Thomas Wiegelmann for providing the NLFFF code. We are also thankful to Binal Patel for help in the analysis of the radio spectrum. We are grateful to the referee of the paper for providing us with a very constructive set of comments and suggestions that enhanced the scientific content and presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuwan Joshi.

Ethics declarations

Disclosure of Potential Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below are the links to the electronic supplementary material.

(MP4 13.4 MB)

(MP4 31.5 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, B., Mitra, P.K., Bhattacharyya, R. et al. Two-Stage Evolution of an Extended C-Class Eruptive Flaring Activity from Sigmoid Active Region NOAA 12734: SDO and Udaipur-CALLISTO Observations. Sol Phys 296, 85 (2021). https://doi.org/10.1007/s11207-021-01820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01820-6

Keywords

Navigation