Skip to main content
Log in

Spectral Characteristics of the He i D3 Line in a Quiescent Prominence Observed by THEMIS

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyze the observations of a quiescent prominence acquired by the Téléscope Heliographique pour l’Étude du Magnetisme et des Instabilités Solaires (THEMIS) in the He i 5876 Å (He i D3) multiplet aiming to measure the spectral characteristics of the He i D3 profiles and to find for them an adequate fitting model. The component characteristics of the He i D3 Stokes I profiles are measured by the fitting system by approximating them with a double Gaussian. This model yields an He i D3 component peak intensity ratio of \(5.5\pm0.4\), which differs from the value of 8 expected in the optically thin limit. Most of the measured Doppler velocities lie in the interval ± 5 km s−1, with a standard deviation of ± 1.7 km s−1 around the peak value of 0.4 km s−1. The wide distribution of the full-width at half maximum has two maxima at 0.25 Å and 0.30 Å for the He i D3 blue component and two maxima at 0.22 Å and 0.31 Å for the red component. The width ratio of the components is \(1.04\pm0.18\). We show that the double-Gaussian model systematically underestimates the blue wing intensities. To solve this problem, we invoke a two-temperature multi-Gaussian model, consisting of two double-Gaussians, which provides a better representation of He i D3 that is free of the wing intensity deficit. This model suggests temperatures of 11.5 kK and 91 kK, respectively, for the cool and the hot component of the target prominence. The cool and hot components of a typical He i D3 profile have component peak intensity ratios of 6.6 and 8, implying a prominence geometrical width of 17 Mm and an optical thickness of 0.3 for the cool component, while the optical thickness of the hot component is negligible. These prominence parameters seem to be realistic, suggesting the physical adequacy of the multi-Gaussian model with important implications for interpreting He i D3 spectropolarimetry by current inversion codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Athay, R.G., Querfeld, C.W., Smartt, R.N., Landi Degl’Innocenti, E., Bommier, V.: 1983, Vector magnetic fields in prominences. III – HeI D3 Stokes profile analysis for quiescent and eruptive prominences. Solar Phys. 89, 3. ADS .

    Article  ADS  Google Scholar 

  • Brault, J.W., White, O.R.: 1971, The analysis and restoration of astronomical data via the fast Fourier transform. Astron. Astrophys. 13, 169. ADS .

    ADS  Google Scholar 

  • Briand, C., Ceppatelli, G.: 2002, THEMIS: instrumentation, results and perspectives. In: Sawaya-Lacoste, H. (ed.) SOLMAG 2002. Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference, ESA Special Publication 505, 11. ADS .

    Google Scholar 

  • Casini, R., López Ariste, A., Tomczyk, S., Lites, B.W.: 2003, Magnetic maps of prominences from full Stokes analysis of the He I D3 line. Astrophys. J. Lett. 598, L67. ADS .

    Article  ADS  Google Scholar 

  • Casini, R., López Ariste, A., Paletou, F., Léger, L.: 2009, Multi-line Stokes inversion for prominence magnetic-field diagnostics. Astrophys. J. 703, 114. ADS .

    Article  ADS  Google Scholar 

  • Chae, J., Ahn, K., Lim, E.-K., Choe, G.S., Sakurai, T.: 2008, Persistent horizontal flows and magnetic support of vertical threads in a quiescent prominence. Astrophys. J. Lett. 689, L73. ADS .

    Article  ADS  Google Scholar 

  • Elste, G.: 1953, Die Entzerrung von Spektrallinien unter Verwendung von Voigtfunktionen. Mit 8 Textabbildungen. Z. Astrophys. 33, 39. ADS .

    ADS  MathSciNet  MATH  Google Scholar 

  • Engvold, O.: 2015, Description and classification of prominences. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophysics and Space Science Library 415, 31. ADS .

    Google Scholar 

  • Fontenla, J.M.: 1979, A prominence model based on spectral observations. Solar Phys. 64, 177. ADS .

    Article  ADS  Google Scholar 

  • Freed, M.S., McKenzie, D.E., Longcope, D.W., Wilburn, M.: 2016, Analysis of flows inside quiescent prominences as captured by Hinode/Solar optical telescope. Astrophys. J. 818, 57. ADS .

    Article  ADS  Google Scholar 

  • González Manrique, S.J., Kuckein, C., Pastor Yabar, A., Collados, M., Denker, C., Fischer, C.E., Gömöry, P., Diercke, A., Bello González, N., Schlichenmaier, R., Balthasar, H., Berkefeld, T., Feller, A., Hoch, S., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Orozco Suárez, D., Schmidt, D., Schmidt, W., Sigwarth, M., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Verma, M., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Fitting peculiar spectral profiles in He I 10830 Å absorption features. ArXiv e-prints. ADS .

  • Gouttebroze, P., Heinzel, P., Vial, J.C.: 1993, The hydrogen spectrum of model prominences. Astron. Astrophys. Suppl. 99, 513. ADS .

    ADS  Google Scholar 

  • Gunár, S., Mackay, D.H.: 2015a, 3D whole-prominence fine structure modeling. Astrophys. J. 803, 64. ADS .

    Article  ADS  Google Scholar 

  • Gunár, S., Mackay, D.H.: 2015b, 3D whole-prominence fine structure modeling. II. Prominence evolution. Astrophys. J. 812, 93. ADS .

    Article  ADS  Google Scholar 

  • Gunár, S., Heinzel, P., Schmieder, B., Schwartz, P., Anzer, U.: 2007, Properties of prominence fine-structure threads derived from SOHO/SUMER hydrogen Lyman lines. Astron. Astrophys. 472, 929. ADS .

    Article  ADS  Google Scholar 

  • Gunár, S., Heinzel, P., Anzer, U., Schmieder, B.: 2008, On Lyman-line asymmetries in quiescent prominences. Astron. Astrophys. 490, 307. ADS .

    Article  ADS  Google Scholar 

  • Gunár, S., Schwartz, P., Schmieder, B., Heinzel, P., Anzer, U.: 2010, Statistical comparison of the observed and synthetic hydrogen Lyman line profiles in solar prominences. Astron. Astrophys. 514, A43. ADS .

    Article  ADS  Google Scholar 

  • Gunár, S., Mein, P., Schmieder, B., Heinzel, P., Mein, N.: 2012, Dynamics of quiescent prominence fine structures analyzed by 2D non-LTE modelling of the H\(\upalpha\) line. Astron. Astrophys. 543, A93. ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Tandberg-Hanssen, E.: 1968, The magnetic field in some prominences measured with the He I, 5876 Å line. Solar Phys. 3, 316. ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Bolding, J., Clark, R., Hauth, D., Hill, F., Kroll, R., Luis, G., Mills, N., Purdy, T., Henney, C., Holland, D., Winter, J.: 2011, Full-disk solar H-alpha images from GONG. In: AAS/Solar Physics Division Abstracts #42, Bulletin of the American Astronomical Society 43, 17.45. ADS .

    Google Scholar 

  • Heinzel, P., Anzer, U.: 2006, On the fine structure of solar filaments. Astrophys. J. Lett. 643, L65. ADS .

    Article  ADS  Google Scholar 

  • House, L.L., Smartt, R.N.: 1982, Vector magnetic fields in prominences. I – Preliminary discussion of polarimeter observations in He I D3. Solar Phys. 80, 53. ADS .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. ADS .

    Article  ADS  Google Scholar 

  • Kotrc, P., Heinzel, P.: 1989, Analysis of HeI 10830 line in a quiescent prominence. Hvar Obs. Bull. 13, 371. ADS .

    ADS  Google Scholar 

  • Kramida, A., Ralchenko, Yu., Reader, J., NIST ASD Team: 2016, NIST Atomic Spectra Database (ver. 5.4), [Online]. Available: http://physics.nist.gov/asd [2017, January 11]. National Institute of Standards and Technology, Gaithersburg, MD.

  • Kuckein, C., Denker, C., Verma, M.: 2014, High-resolution spectroscopy of a giant solar filament. In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) Nature of Prominences and Their Role in Space Weather, IAU Symposium 300, 437. ADS .

    Google Scholar 

  • Labrosse, N., Gouttebroze, P.: 2001, Formation of helium spectrum in solar quiescent prominences. Astron. Astrophys. 380, 323. ADS .

    Article  ADS  Google Scholar 

  • Labrosse, N., Gouttebroze, P.: 2004, Non-LTE radiative transfer in model prominences. I. Integrated intensities of He I triplet lines. Astrophys. J. 617, 614. ADS .

    Article  ADS  Google Scholar 

  • Landi Degl’Innocenti, E.: 1982, The determination of vector magnetic fields in prominences from the observations of the Stokes profiles in the D3 line of helium. Solar Phys. 79, 291. ADS .

    Article  ADS  Google Scholar 

  • Landi Degl’Innocenti, E., Landolfi, M. (eds.): 2004, Polarization in Spectral Lines, Astrophysics and Space Science Library 307. ADS .

    Google Scholar 

  • Landman, D.A.: 1981, Quiescent prominence spectrophotometry – Sodium D1,2, helium D3, and calcium /plus/ lambda 8498. Astrophys. J. 251, 768. ADS .

    Article  ADS  Google Scholar 

  • Landman, D.A., Edberg, S.J., Laney, C.D.: 1977, Measurements of H\(\upbeta\), He D3, and Ca+ \(\lambda\)8542 line emission in quiescent prominences. Astrophys. J. 218, 888. ADS .

    Article  ADS  Google Scholar 

  • Léger, L.: 2008, Transfert de rayonnement hors-etl multidimensionnel. application au spectre de l’helium des protuberances solaires. PhD thesis, Planete et Univers [physics]. Universite Paul Sabatier – Toulouse III, 2008. Francais. https://tel.archives-ouvertes.fr/tel-00332781/document .

  • Léger, L., Paletou, F.: 2009, 2D non-LTE radiative modelling of He I spectral lines formed in solar prominences. Astron. Astrophys. 498, 869. ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17. ADS .

    Article  ADS  Google Scholar 

  • Leroy, J.L.: 1989, Observation of prominence magnetic fields. In: Priest, E.R. (ed.) Dynamics and Structure of Quiescent Solar Prominences, Astrophysics and Space Science Library 150, 77. ADS .

    Chapter  Google Scholar 

  • Levens, P.J., Schmieder, B., López Ariste, A., Labrosse, N., Dalmasse, K., Gelly, B.: 2016a, Magnetic field in atypical prominence structures: bubble, tornado, and eruption. Astrophys. J. 826, 164. ADS .

    Article  ADS  Google Scholar 

  • Levens, P.J., Schmieder, B., Labrosse, N., López Ariste, A.: 2016b, Structure of prominence legs: plasma and magnetic field. Astrophys. J. 818, 31. ADS .

    Article  ADS  Google Scholar 

  • Li, K., Gu, X., Chen, X.: 2000, Calculations and physical properties of the D3 emission lines of a prominence. Mon. Not. Roy. Astron. Soc. 313, 761. ADS .

    Article  ADS  Google Scholar 

  • Lin, Y., Martin, S.F., Engvold, O.: 2008, Filament substructures and their interrelation. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, Astronomical Society of the Pacific Conference Series 383, 235. ADS .

    Google Scholar 

  • Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J.E., Berger, T.E.: 2005, Thin threads of solar filaments. Solar Phys. 226, 239. ADS .

    Article  ADS  Google Scholar 

  • Lin, Y., Engvold, O., Rouppe van der Voort, L.H.M., van Noort, M.: 2007, Evidence of traveling waves in filament threads. Solar Phys. 246, 65. ADS .

    Article  ADS  Google Scholar 

  • López Ariste, A.: 2015, Magnetometry of prominences. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophysics and Space Science Library 415, 179. ADS .

    Google Scholar 

  • López Ariste, A., Aulanier, G.: 2007, Unveiling the magnetic field topology of prominences. In: Heinzel, P., Dorotovič, I., Rutten, R.J. (eds.) The Physics of Chromospheric Plasmas, Astronomical Society of the Pacific Conference Series 368, 291. ADS .

    Google Scholar 

  • López Ariste, A., Casini, R.: 2002, Magnetic fields in prominences: inversion techniques for spectropolarimetric data of the He I D3 line. Astrophys. J. 575, 529. ADS .

    Article  ADS  Google Scholar 

  • López Ariste, A., Casini, R.: 2003, Improved estimate of the magnetic field in a prominence. Astrophys. J. Lett. 582, L51. ADS .

    Article  ADS  Google Scholar 

  • López Ariste, A., Rayrole, J., Semel, M.: 2000, First results from THEMIS spectropolarimetric mode. Astron. Astrophys. Suppl. 142, 137. ADS .

    Article  ADS  Google Scholar 

  • López Ariste, A., Asensio Ramos, A., Manso Sainz, R., Derouich, M., Gelly, B.: 2009, Variability of the polarization profiles of the Ba II D2 line in the solar atmosphere. Astron. Astrophys. 501, 729. ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – Magnetic structure and dynamics. Space Sci. Rev. 151, 333. ADS .

    Article  ADS  Google Scholar 

  • Markwardt, C.B.: 2009, Non-linear least-squares fitting in IDL with MPFIT. In: Bohlender, D.A., Durand, D., Dowler, P. (eds.) Astronomical Data Analysis Software and Systems XVIII, Astronomical Society of the Pacific Conference Series 411, 251. ADS .

    Google Scholar 

  • Mein, P.: 1977, Multi-channel subtractive spectrograph and filament observations. Solar Phys. 54, 45. ADS .

    Article  ADS  Google Scholar 

  • Mein, P.: 1991, Solar 2D spectroscopy – a new MSDP instrument. Astron. Astrophys. 248, 669. ADS .

    ADS  Google Scholar 

  • Moré, J.: 1978, The Levenberg–Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis, Lecture Notes in Mathematics 630, 105.

    Chapter  Google Scholar 

  • Moré, J., Wright, S.: 1993, Optimization Software Guide, Frontiers in Applied Mathematics 14. 978-0-89871-322-0.

    Book  MATH  Google Scholar 

  • Neckel, H.: 1999, Announcement spectral atlas of solar absolute disk-averaged and disk-center intensity from 3290 to 12510 Å (Brault and Neckel, 1987) now available from hamburg observatory anonymous FTP site. Solar Phys. 184, 421.

    Article  ADS  Google Scholar 

  • Orozco Suárez, D., Asensio Ramos, A., Trujillo Bueno, J.: 2014, The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He I 10 830 Å triplet. Astron. Astrophys. 566, A46. ADS .

    Article  ADS  Google Scholar 

  • Paletou, F.: 2008, The magnetic field of solar prominences. In: Charbonnel, C., Combes, F., Samadi, R. (eds.) SF2A-2008, 559. ADS .

    Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The solar dynamics observatory (SDO). Solar Phys. 275, 3. ADS .

    Article  ADS  Google Scholar 

  • Pötzi, W., Veronig, A.M., Riegler, G., Amerstorfer, U., Pock, T., Temmer, M., Polanec, W., Baumgartner, D.J.: 2015, Real-time flare detection in ground-based H\(\upalpha\) imaging at Kanzelhöhe observatory. Solar Phys. 290, 951. ADS .

    Article  ADS  Google Scholar 

  • Prasad, C.D., Ambastha, A., Mathew, S.K.: 1999, Dynamical properties of quiescent prominence in He D3 5876 Å line emission. Bull. Astron. Soc. India 27, 411. ADS .

    ADS  Google Scholar 

  • Querfeld, C.W., Smartt, R.N., Bommier, V., Landi Degl’Innocenti, E., House, L.L.: 1985, Vector magnetic fields in prominences. II – HeI D3 Stokes profiles analysis for two quiescent prominences. Solar Phys. 96, 277. ADS .

    Article  ADS  Google Scholar 

  • Ramelli, R., Bianda, M.: 2005, He-D3 polarization observed in prominences. In: Hanslmeier, A., Veronig, A., Messerotti, M. (eds.) Solar Magnetic Phenomena, Astrophysics and Space Science Library 320, 215. ADS .

    Chapter  Google Scholar 

  • Rutten, R.J.: 2003, Radiative Transfer in Stellar Atmospheres. ADS .

    Google Scholar 

  • Sainz Dalda, A., López Ariste, A.: 2007, Chromospheric reversals in the emergence of an ephemeral region. Astron. Astrophys. 469, 721. ADS .

    Article  ADS  Google Scholar 

  • Schmieder, B., Chandra, R., Berlicki, A., Mein, P.: 2010, Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon). Astron. Astrophys. 514, A68. ADS .

    Article  ADS  Google Scholar 

  • Schmieder, B., Kucera, T.A., Knizhnik, K., Luna, M., Lopez-Ariste, A., Toot, D.: 2013, Propagating waves transverse to the magnetic field in a solar prominence. Astrophys. J. 777, 108. ADS .

    Article  ADS  Google Scholar 

  • Schmieder, B., Tian, H., Kucera, T., López Ariste, A., Mein, N., Mein, P., Dalmasse, K., Golub, L.: 2014, Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP. Astron. Astrophys. 569, A85. ADS .

    Article  ADS  Google Scholar 

  • Schwartz, P., Gunár, S., Curdt, W.: 2015, Non-LTE modelling of prominence fine structures using hydrogen Lyman-line profiles. Astron. Astrophys. 577, A92. ADS .

    Article  ADS  Google Scholar 

  • Semel, M.: 1980, A precise optical polarization analyzer. Astron. Astrophys. 91, 369. ADS .

    ADS  Google Scholar 

  • Štěpán, J., Trujillo Bueno, J., Leenaarts, J., Carlsson, M.: 2015, Three-dimensional radiative transfer simulations of the scattering polarization of the hydrogen Ly\(\upalpha\) line in a magnetohydrodynamic model of the chromosphere-corona transition region. Astrophys. J. 803, 65. ADS .

    Article  ADS  Google Scholar 

  • Vial, J.-C., Pelouze, G., Heinzel, P., Kleint, L., Anzer, U.: 2016, Observed IRIS profiles of the h and k doublet of Mg ii and comparison with profiles from quiescent prominence NLTE models. Solar Phys. 291, 67. ADS .

    Article  ADS  Google Scholar 

  • Warner, B.: 1967, Some effects of pressure broadening in solar and stellar curves of growth. Mon. Not. Roy. Astron. Soc. 136, 381. ADS .

    Article  ADS  Google Scholar 

  • Wiehr, E., Bianda, M.: 2003, Solar prominence polarimetry. Astron. Astrophys. 404, L25. ADS .

    Article  ADS  Google Scholar 

  • Wuelser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J.-P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.-F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Telescopes and Instrumentation for Solar Astrophysics, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 5171, 111. ADS .

    Chapter  Google Scholar 

  • Wülser, J.-P., Lemen, J.R., Nitta, N.: 2007, The STEREO SECCHI/EUVI EUV coronal imager. In: Solar Physics and Space Weather Instrumentation II, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 6689, 668905. ADS .

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for valuable comments, which improved the article substantially. J. Koza is grateful to P. Heinzel and E. Dzifčáková for fruitful discussions, comments, and suggestions. J. Koza and M. Kozák would like to thank B. Gelly, the director of the THEMIS solar telescope, and the technical team for their support during their THEMIS observing campaign. The authors thank M. Saniga for language corrections of the article. This work was supported by the Science Grant Agency project VEGA 2/0004/16. The THEMIS observations were taken within the EU-7FP-SOLARNET Transnational Access and Service Programme (High Resolution Solar Physics Network – FP7-INFRASTRUCTURES-2012-1). This article was created by the realization of the project ITMS No. 26220120029, based on the supporting operational Research and development program financed from the European Regional Development Fund. This work uses GONG data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. The AIA data used here are courtesy of SDO (NASA) and the AIA consortium. The STEREO B data used here were produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Lab (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut for Solar System Research (Germany), Centre Spatiale de Liege (Belgium), Institut d’Optique Theorique et Appliquee (France), and Institut d’Astrophysique Spatiale (France). This research has made use of NASA Astrophysics Data System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Július Koza.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 2.8 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koza, J., Rybák, J., Gömöry, P. et al. Spectral Characteristics of the He i D3 Line in a Quiescent Prominence Observed by THEMIS. Sol Phys 292, 98 (2017). https://doi.org/10.1007/s11207-017-1118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1118-z

Keywords

Navigation