Skip to main content
Log in

The Effect of Limited Sample Sizes on the Accuracy of the Estimated Scaling Parameter for Power-Law-Distributed Solar Data

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Many natural processes exhibit a power-law behavior. The power-law exponent is linked to the underlying physical process, and therefore its precise value is of interest. With respect to the energy content of nanoflares, for example, a power-law exponent steeper than 2 is believed to be a necessary condition for solving the enigmatic coronal heating problem. Studying power-law distributions over several orders of magnitudes requires sufficient data and appropriate methodology. In this article we demonstrate the shortcomings of some popular methods in solar physics that are applied to data of typical sample sizes. We use synthetic data to study the effect of the sample size on the performance of different estimation methods. We show that vast amounts of data are needed to obtain a reliable result with graphical methods (where the power-law exponent is estimated by a linear fit on a log-transformed histogram of the data). We revisit published results on power laws for the angular width of solar coronal mass ejections and the radiative losses of nanoflares. We demonstrate the benefits of the maximum likelihood estimator and advocate its use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. Our dataset expresses energy in data numbers (DN). Berghmans, Clette, and Moses (1998) reported a factor of \(2\times10^{20}~\mbox{erg}/\mbox{DN}\) to convert the flare energies to the physical units used in the histograms. However, we suspect a typographical error in this conversion factor. We needed to rescale our histogram by a factor of \(2\times10^{24}~\mbox{erg}/\mbox{DN}\) to reproduce the results of Berghmans, Clette, and Moses and to obtain reasonable energies for solar flares.

References

  • Aschwanden, M.J., Crosby, N.B., Dimitropoulou, M., Georgoulis, M.K., Hergarten, S., McAteer, J., Milovanov, A.V., Mineshige, S., Morales, L., Nishizuka, N., Pruessner, G., Sanchez, R., Sharma, A.S., Strugarek, A., Uritsky, V.: 2016, 25 years of self-organized criticality: Solar and astrophysics. Space Sci. Rev. 198, 47. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bak, P., Tang, C., Wiesenfeld, K.: 1987, Self-organized criticality – An explanation of \(1/f\) noise. Phys. Rev. Lett. 59, 381. DOI . ADS .

    Article  ADS  MathSciNet  Google Scholar 

  • Berghmans, D.: 2002, Getting hot by nanoflares. In: Wilson, A. (ed.) Solar Variability: From Core to Outer Frontiers, ESA SP-506, 501. ADS .

    Google Scholar 

  • Berghmans, D., Clette, F., Moses, D.: 1998, Quiet Sun EUV transient brightenings and turbulence. A panoramic view by EIT on board SOHO. Astron. Astrophys. 336, 1039. ADS .

    ADS  Google Scholar 

  • Boffetta, G., Carbone, V., Giuliani, P., Veltri, P., Vulpiani, A.: 1999, Power laws in solar flares: Self-organized criticality or turbulence? Phys. Rev. Lett. 83, 4662. DOI .

    Article  ADS  Google Scholar 

  • Clauset, A., Rohilla Shalizi, C., Newman, M.E.J.: 2007, Power-law distributions in empirical data. ArXiv e-prints. arXiv .

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • D’Huys, E., Seaton, D.B., Poedts, S., Berghmans, D.: 2014, Observational characteristics of coronal mass ejections without low-coronal signatures. Astrophys. J. 795, 49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Goldstein, M.L., Morris, S.A., Yen, G.G.: 2004, Problems with fitting to the power-law distribution. Eur. Phys. J. B 41, 255. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S.: 1991, Solar flares, microflares, nanoflares, and coronal heating. Solar Phys. 133, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lai, W.: 2016, Fitting power law distributions to data. http://www.stat.berkeley.edu/~aldous/Research/Ugrad/Willy_Lai.pdf .

  • Lu, E.T., Hamilton, R.J.: 1991, Avalanches and the distribution of solar flares. Astrophys. J. Lett. 380, L89. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muniruzzaman, A.N.M.: 1957, On measures of location and dispersion and tests of hypotheses on a Pareto population. Bull. Calcutta Stat. Assoc. 7, 115.

    MathSciNet  Google Scholar 

  • Newman, M.: 2005, Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323. DOI . ADS .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Berghmans, D., Van der Linden, R.A.M.: 2009, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J. 691, 1222. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ryan, D.F., Dominique, M., Seaton, D.B., Stegen, K., White, A.: 2016, The effects of flare definitions on the statistics of derived flare distributions. Astron. Astrophys. DOI

    Google Scholar 

  • Shimizu, T.: 1995, Energetics and occurrence rate of active-region transient brightenings and implications for the heating of the active-region corona. Publ. Astron. Soc. Japan 47, 251. ADS .

    ADS  Google Scholar 

  • Wheatland, M.S.: 2004, A Bayesian approach to solar flare prediction. Astrophys. J. 609, 1134. DOI . ADS .

    Article  ADS  Google Scholar 

  • White, E.P., Enquist, B.J., Green, J.L.: 2008, On estimating the exponent of power-law frequency distributions. Ecology 89, 905. DOI .

    Article  Google Scholar 

  • Yashiro, S., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2006, Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys. J. Lett. 650, L143. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to V. Delouille and the PROBA2/SWAP team for valuable input. We also thank the anonymous referee for insightful comments that helped us improve this article. This research was co-funded by a Supplementary Researchers Grant offered by the Belgian Science Policy Office (BELSPO) in the framework of the Scientific Exploitation of PROBA2, the Inter-University Attraction Poles Programme initiated by BELSPO (IAP P7/08 CHARM), and the European Union’s Seventh Framework Programme for Research, Technological Development and Demonstration under Grant Agreements No. 284461 (Project eHeroes, www.eheroes.eu ) and No. 269299 (Project SOLSPANET, www.solspanet.eu ). These results were also obtained in the framework of the projects GOA/2015-014 (KU Leuven), G.0729.11 (FWO-Vlaanderen) and C 90347 (ESA Prodex). E. D’Huys and D.B. Seaton additionally acknowledge support from BELSPO through the ESA-PRODEX program, grant No. 4000103240. This paper uses data from the CACTus CME catalog, generated and maintained by the SIDC at the Royal Observatory of Belgium ( www.sidc.be/cactus ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke D’Huys.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MP4 110 kB)

(MP4 286 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Huys, E., Berghmans, D., Seaton, D.B. et al. The Effect of Limited Sample Sizes on the Accuracy of the Estimated Scaling Parameter for Power-Law-Distributed Solar Data. Sol Phys 291, 1561–1576 (2016). https://doi.org/10.1007/s11207-016-0910-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0910-5

Keywords

Navigation