Skip to main content
Log in

Solar Cycle Predictions (Invited Review)

  • THE SUN 360
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar cycle predictions are needed to plan long-term space missions, just as weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on low-Earth orbit spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as the reduced propellant load is consumed more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5 – 20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations of how those predictions could be made more accurate in the future are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/MONTHLY .

  2. http://www.swpc.noaa.gov/SolarCycle/ .

  3. http://www.esa-spaceweather.net/spweather/current_sw/index.html .

  4. http://www.ips.gov.au/Space_Weather .

  5. http://www.spaceweather.co.za .

  6. http://www.spaceweather.go.kr .

  7. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/INTERNATIONAL/daily/RIDAILY.PLT .

References

  • Aguirre, L., Letellier, C., Maquet, J.: 2008, Forecasting the time series of sunspot numbers. Solar Phys. 249, 103 – 120. doi: 10.1007/s11207-008-9160-5 .

    Article  ADS  Google Scholar 

  • Ahluwalia, H.S.: 2008, Development of solar activity cycle 24: Some comments. 37th COSPAR Abstr. 37, 36.

    Google Scholar 

  • Ashrafi, S., Roszman, L.: 1992, Detecting and disentangling nonlinear structure from solar flux time series. NASA STI/Recon Technical Report N92-28871 92, 1 – 11.

  • Badalyan, O.G., Obridko, V., Sykora, N.J.: 2001, Brightness of the coronal green line and prediction for activity cycles 23 and 24. Solar Phys. 199, 421 – 435.

    Article  ADS  Google Scholar 

  • Baranovski, A.L., Clette, F., Nollau, V.: 2008, Nonlinear solar cycle forecasting: Theory and perspectives. Ann. Geophys. 26, 231 – 241.

    Article  ADS  Google Scholar 

  • Bassingthwaighte, J.B., Liebovitch, L.S., West, B.J.: 1994, Fractal Physiology, Oxford University Press, New York.

    Google Scholar 

  • Biesecker, D., the Solar Cycle 24 Prediction Panel: 2007, Consensus statement of the solar cycle 24 prediction panel, released March 2007. http://www.swpc.noaa.gov/SolarCycle/SC24/ .

  • Black, F., Scholes, M.: 1973, The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637 – 654. doi: 10.1086/260062 .

    Article  Google Scholar 

  • Brajša, R., Wöhl, H., Hanslmeier, A., Verbanac, G., Rujždjak, D., Cliver, E., Svalgaard, L., Roth, M.: 2009, On solar cycle predictions and reconstructions. Astron. Astrophys. 496, 855 – 861. doi: 10.1051/0004-6361:200810862 .

    Article  ADS  Google Scholar 

  • Brown, G.: 1986, Working Group “A” report: Long-term solar activity predictions. In: Simon, P.A., Heckman, G., Shea, M.A. (eds.) Solar-Terrestrial Predictions, 1 – 7.

    Google Scholar 

  • Brown, G.M.: 1992, The peak of solar cycle 22 – Predictions in retrospect. Ann. Geophys. 10, 453 – 461.

    ADS  Google Scholar 

  • Bushby, P.J., Tobias, S.M.: 2007, On predicting the solar cycle using mean-field models. Astrophys. J. 661, 1289 – 1296. doi: 10.1086/516628 .

    Article  ADS  Google Scholar 

  • Cameron, R., Schüssler, M.: 2007, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801 – 811. doi: 10.1086/512049 .

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2010, Dynamo models of the solar cycle. Liv. Rev. Solar Phys. 7(3). http://www.livingreviews.org/lrsp-2010-3 .

  • Charvátová, I.: 2009, Long-term predictive assessments of solar and geomagnetic activities made on the basis of the close similarity between the solar inertial motions in the intervals 1840 – 1905 and 1980 – 2045. New Astron. 14, 25 – 30. doi: 10.1016/j.newast.2008.04.005 .

    Article  ADS  Google Scholar 

  • Chatfield, C.: 1978, The Holt–Winters forecasting procedure. J. Roy. Stat. Soc., Ser. C 27(3), 264 – 279. http://www.jstor.org/stable/2347162 .

    Google Scholar 

  • Chatfield, C., Yar, M.: 1988, Holt–Winters forecasting: Some practical issues. J. Roy. Stat. Soc., Ser. D 37(2), 129 – 140. http://www.jstor.org/stable/2348687 .

    Google Scholar 

  • Chopra, P., Dabas, R.: 2006, Prediction of maximum amplitude of the next solar cycle 24 using modified precursor method. 36th COSPAR Abstr. 36, 909.

    Google Scholar 

  • Choudhuri, A., Chatterjee, P., Jiang, J.: 2007, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103. doi: 10.1103/PhysRevLett.98.131103 .

    Article  ADS  Google Scholar 

  • Chumak, O.: 2005, Self-similar and self-affine structures in the observational data on solar activity. Astron. Astrophys. Trans. 24, 93 – 99. doi: 10.1080/10556790500126472 .

    Article  ADS  Google Scholar 

  • Clilverd, M., Clarke, E., Ulich, T., Rishbeth, H., Jarvis, M.: 2006, Predicting solar cycle 24 and beyond. Space Weather 4, S09005. doi: 10.1029/2005SW000207 .

    Article  Google Scholar 

  • Crosson, I.J., Binder, P.M.: 2009, Chaos-based forecast of sunspot cycle 24. J. Geophys. Res. 114, 1108 – 1112. doi: 10.1029/2008JA013859 .

    Article  Google Scholar 

  • Dabas, R.S., Sharma, K., Das, R.M., Pillai, K.G.M., Chopra, P., Sethi, N.K.: 2008, A prediction of solar cycle 24 using a modified precursor method. Solar Phys. 250, 171 – 181. doi: 10.1007/s11207-008-9200-1 .

    Article  ADS  Google Scholar 

  • de Meyer, F.: 2003, A transfer function model for the sunspot cycle. Solar Phys. 217, 349 – 366.

    Article  ADS  Google Scholar 

  • Dikpati, M.: 2008, Predicting cycle 24 using various dynamo-based tools. Ann. Geophys. 26, 259 – 267. doi: 10.5194/angeo-26-259-2008 . http://www.ann-geophys.net/26/259/2008/ .

    Article  ADS  Google Scholar 

  • Dikpati, M., de Toma, G., Gilman, P.: 2006, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102. doi: 10.1029/2005GL025221 .

    Article  Google Scholar 

  • Du, Z., Du, S.: 2006, The relationship between the amplitude and descending time of a solar activity cycle. Solar Phys. 238, 431 – 437.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N., Zhang, L.Y.: 2008, A running average method for predicting the size and length of a solar cycle. Chin. J. Astron. Astrophys. 8, 477 – 488. doi: 10.1088/1009-9271/8/4/12 .

    Article  ADS  Google Scholar 

  • Du, Z., Wang, H., He, H., Zhang, L., Li, R., Cui, Y.: 2008, A summary of the applications of a weighted average method determining times of solar cycle extrema. Adv. Space Res. 42, 1457 – 1463. doi: 10.1016/j.asr.2007.06.072 .

    Article  ADS  Google Scholar 

  • Duhau, S.: 2003, An early prediction of maximum sunspot number in solar cycle 24. Solar Phys. 213, 203 – 212.

    Article  ADS  Google Scholar 

  • Echer, E., Rigozo, N., Nordemann, D., Vieira, L.: 2004, Prediction of solar activity on the basis of spectral characteristics of sunspot number. Ann. Geophys. 22, 2239 – 2243. doi: 1432-0576/ag/2004-22-2239 .

    Article  ADS  Google Scholar 

  • Euler, H.J., Smith, S.: 2006, Future solar activity estimates for use in prediction of space environmental effects on spacecraft orbital lifetime and performance. Technical report, NASA, Marshall Space Flight Center. http://sail.msfc.nasa.gov/current_solar_report/CurRpt.pdf . File dated September 2006.

  • Fyodorov, M.V., Klimenko, V.V., Dovgalyuk, V.V.: 1996, Sunspot minima dates: A secular forecast. Solar Phys. 165, 193 – 199. doi: 10.1007/BF00149098 .

    Article  ADS  Google Scholar 

  • Gholipour, A., Lucasa, C., Araabia, B., Shafiee, M.: 2005, Solar activity forecast: Spectral analysis and neurofuzzy prediction. J. Atmos. Solar-Terr. Phys. 67, 595 – 603.

    Article  ADS  Google Scholar 

  • Gilman, D.L., Fuglister, F.J., Mitchell, J.: 1963, On the power spectrum of “red noise”. J. Atmos. Sci. 20, 182 – 184.

    Article  ADS  Google Scholar 

  • González Hernández, I., Hill, F., Lindsey, C.: 2007, Calibration of seismic signatures of active regions on the far side of the Sun. Astrophys. J. 669, 1382 – 1389. doi: 10.1086/521592 .

    Article  ADS  Google Scholar 

  • Graham, B.: 2003, The Intelligent Investor, Revised edn., HarperCollins, New York.

    Google Scholar 

  • Greenkorn, R.A.: 2009, Analysis of sunspot activity cycles. Solar Phys. 255, 301 – 323. doi: 10.1007/s11207-009-9331-z .

    Article  ADS  Google Scholar 

  • Hamid, R., Galal, A.: 2006, Preliminary prediction of the strength of the 24th 11-year solar cycle. In: Bothmer, V., Hady, A.A. (eds.) Solar Activity and Its Magnetic Origin, Proc. IAU Symp. 233, Cambridge Univ. Press, Cambridge, 413 – 416.

    Google Scholar 

  • Hathaway, D.H.: 2010, Does the current minimum validate (or invalidate) cycle prediction methods? In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum CS-428, Astron. Soc. Pac., San Francisco, 307 – 311.

    Google Scholar 

  • Hathaway, D.H., Wilson, R.M.: 2004, What the sunspot record tells us about space climate. Solar Phys. 224, 5 – 19.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M.: 2006, Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys. Res. Lett. 33, L18101. doi: 10.1029/2006GL027053 .

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichman, E.J.: 1999, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104, 375 – 388.

    Article  Google Scholar 

  • He, H., Wang, H., Du, Z., Li, R., Cui, Y., Zhang, L., He, Y.: 2008, Solar activity prediction studies and services in NAOC. Adv. Space Res. 42, 1450 – 1456. doi: 10.1016/j.asr.2007.02.068 .

    Article  ADS  Google Scholar 

  • Herbrich, R., Keilbach, M., Graepel, T., Bollmann-Sdorra, P., Obermayer, K.: 1999, Neural networks in economics: Background, applications, and new developments. Adv. Comput. Econ. 11, 169 – 196.

    Article  Google Scholar 

  • Hindman, B.W., Gizon, L., Thomas, L., Duvall, J., Haber, D.A., Toomre, J.: 2004, Comparison of solar subsurface flows assessed by ring and time-distance analyses. Astrophys. J. 613, 1253 – 1262.

    Article  ADS  Google Scholar 

  • Hiremath, K.: 2008, Prediction of solar cycle 24 and beyond. Astrophys. Space Sci., 45 – 49. doi: 10.1007/s10509-007-9728-9 .

  • Horstman, M.: 2005, Varying solar flux models and their effect on the future debris environment projection. Orbital Debris Q. News 9, 4 – 5.

    Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R., Schou, J., Thompson, M.J.: 2009, A note on the torsional oscillation at solar minimum. Astrophys. J. Lett. 701, L87 – L90. doi: 10.1088/0004-637X/701/2/L87 .

    Article  ADS  Google Scholar 

  • Hurst, H.: 1951, Long-term storage of reservoirs: an experimental study. Trans. Am. Soc. Civ. Eng. 116, 770 – 799.

    Google Scholar 

  • Ilonidis, S., Zhao, J., Kosovichev, A.: 2011, Detection of emerging sunspot regions in the solar interior. Science 333(6045), 993 – 996. doi: 10.1126/science.1206253 . http://www.sciencemag.org/content/333/6045/993.abstract .

    Article  ADS  Google Scholar 

  • Jain, R.: 2006, Prediction of the amplitude in sunspot cycle 24. 36th COSPAR Abstr. 36, 642.

    Google Scholar 

  • Janssens, J.: 2005, Solar cycle 24: Overview of predictions on the start and amplitude of a new solar cycle. http://members.chello.be/j.janssens/SC24pred.pdf .

  • Janssens, J.: 2006, Solar cycle 24: Overview of predictions on the start and amplitude of a new solar cycle. http://members.chello.be/j.janssens/SC24.html .

  • Javaraiah, J.: 2007, North-south asymmetry in solar activity: Predicting the amplitude of the next solar cycle. Mon. Not. Roy. Astron. Soc. Lett., L34 – L38. doi: 10.1111/j.1745-3933.2007.00298.x .

  • Javaraiah, J.: 2008, Predicting the amplitude of a solar cycle using the north–south asymmetry in the previous cycle: II. An improved prediction for solar cycle 24. Solar Phys. 252, 419 – 439. doi: 10.1007/s11207-008-9269-6 .

    Article  ADS  Google Scholar 

  • Joselyn, J., Anderson, J., Coffey, H., Harvey, K., Hathaway, D., Heckman, G., Hildner, E., Mende, W., Schatten, K., Thompson, R., Thomson, A., White, O.: 1997, Panel achieves consensus prediction of solar cycle 23. Eos Trans. AGU 78, 205 – 212.

    Article  ADS  Google Scholar 

  • Kane, R.: 1999, Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components. Solar Phys. 189, 217 – 224.

    Article  ADS  Google Scholar 

  • Kane, R.: 2007a, A preliminary estimate of the size of the coming solar cycle 24, based on Ohl’s precursor method. Solar Phys. 246, 487 – 493. doi: 10.1007/s11207-007-9059-6 .

    Article  ADS  Google Scholar 

  • Kane, R.: 2007b, Solar cycle predictions based on extrapolation of spectral components: An update. Solar Phys. 243, 205 – 217.

    Article  ADS  Google Scholar 

  • Kane, R.: 2008, How useful is the Waldmeier effect for prediction of a sunspot cycle? J. Atmos. Solar-Terr. Phys. 70, 1533 – 1540. doi: 10.1016/j.jastp.2008.04.010 .

    Article  ADS  Google Scholar 

  • Kennewell, J., Patterson, G.: 2006, Prediction, quoted in Pesnell (2008).

  • Khramova, M., Krasotkin, S., Kononovich, E.: 2002, New aspects of solar activity forecast. In: Sawaya-Lacoste, H. (ed.) Solspa 2001, Proceedings of the Second Solar Cycle and Space Weather Euroconference SP-477. ESA, Noordwijk, 229 – 232.

    Google Scholar 

  • Kilcik, A., Anderson, C.N.K., Rozelot, J.P., Ye, H., Sugihara, G., Ozguc, A.: 2009, Nonlinear prediction of solar cycle 24. Astrophys. J. 693, 1173 – 1177. http://arxiv.org/pdf/0811.1708 .

    Article  ADS  Google Scholar 

  • Kim, M.Y., Wilson, J., Cucinotta, F.: 2006, A solar cycle statistical model for the projection of space radiation environment. Adv. Space Res. 37, 1741 – 1748. doi: 10.1016/j.asr.2004.11.036 .

    Article  ADS  Google Scholar 

  • King-Hele, D.G.: 1963, Prediction of future sunspot cycles. Nature 199, 226 – 227. doi: 10.1038/199226a0 .

    Article  ADS  Google Scholar 

  • King-Hele, D.G.: 1966, Prediction of the dates and intensities of the next two sunspot maxima. Nature 209(5020), 285 – 286. doi: 10.1038/209285a0 .

    Article  ADS  Google Scholar 

  • Kitiashvili, I., Kosovichev, A.: 2008, Prediction of sunspot cycles by data assimilation method. Technical report, Stanford Univ., Stanford, CA. http://arxiv.org/abs/0807.3284 .

  • Kontor, N.N.: 2006, Statistics-based regular extrapolation, quoted in Pesnell (2008).

  • Kryachko, A., Nusinov, A.: 2008, Standard prediction of solar cycles. Geomagn. Aeron. 48, 145 – 148. doi: 10.1007/s11478-008-2002-7 .

    Article  ADS  Google Scholar 

  • Lantos, P.: 2006, The skewness of a solar cycle as a precursor of the amplitude of the next. Solar Phys. 229, 373 – 386. doi: 10.1007/s11207-006-0128-z .

    Article  ADS  Google Scholar 

  • Li, K.J., Yun, H.S., Gu, X.M.: 2001, On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron. Astrophys. 368, 285 – 291. doi: 10.1051/0004-6361:20000547 .

    Article  ADS  Google Scholar 

  • Lo, A.W., Mackinlay, A.C.: 2002, A Non-random Walk Down Wall Street, 5th edn., Princeton University Press, Princeton.

    Google Scholar 

  • Lynch, P.: 2008a, The ENIAC forecasts: A re-creation. Bull. Am. Meteorol. Soc. 89, 45 – 55.

    Article  ADS  Google Scholar 

  • Lynch, P.: 2008b, The origins of computer weather prediction and climate modeling. J. Comput. Phys. 227, 3431 – 3444. doi: 10.1016/j.jcp.2007.02.034 .

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mandelbrot, B.B., Wallis, J.R.: 1969, Some long-run properties of geophysical records. Water Resour. Res. 5, 321 – 340.

    Article  ADS  Google Scholar 

  • Mariş, G., Popescu, M., Beşliu, D.: 2004, Solar cycle 23 analysis. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, Proc. IAU Symp. 233, Cambridge Univ. Press, Cambridge, 127 – 128.

    Google Scholar 

  • Maris, G., Oncica, A.: 2006, Solar cycle 24 forecasts. Sun Geosp. 1. http://www.stil.bas.bg/IHY/forms/SUN_GEO200601.html .

  • McIntosh, P., Brown, G., Buhmann, R., Clark, T., Fougere, P., Hunter, H., Lincoln, J., Sargent, I., Timothy, J., Lin, Y.: 1979, Long-term solar activity predictions. In: Donnelly, R. (ed.) NOAA Solar-Terrestrial Predictions Proceedings 2, 246 – 257.

    Google Scholar 

  • Miyahara, H.: 2008, Prediction based on radiocarbon record, quoted in Pesnell (2008).

  • Nandy, D., Munoz-Jaramillo, A., Martens, P.C.H.: 2011, The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature 471(7336), 80 – 82. doi: 10.1038/nature09786 .

    Article  ADS  Google Scholar 

  • Nevanlinna, H.: 2007, Geomagnetic precursor based on aa, quoted in Pesnell (2008).

  • Niehaus, K.O., Euler, Jr., H.C., Vaughan, W.W.: 1996, Statistical technique for intermediate and long-range estimation of 13-month smoothed solar flux and geomagnetic index. NASA Technical Memorandom 4759, NASA. http://sail.msfc.nasa.gov/tm4759.pdf .

  • NOAA: 2006, List of sunspot maximum and minimum 1610-present. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/maxmin.new .

  • Obridko, V.: 2008, Average of four separate precursor predictions, quoted in Pesnell (2008).

  • Obridko, V., Shelting, B.: 2008, On prediction of the strength of the 11-year solar cycle. Solar Phys. 248, 191 – 202. doi: 10.1007/s11207-008-9138-3 .

    Article  ADS  Google Scholar 

  • Ogurtsov, M.G.: 2005, On the possibility of forecasting the Sun’s activity using radiocarbon solar proxy. Solar Phys. 231, 167 – 176. doi: 10.1007/s11207-005-8775-z .

    Article  ADS  Google Scholar 

  • Ohl, A.I.: 1966, Wolf’s number prediction for the maximum of the cycle 20. Soln. Dannye 12, 84 – 85.

    Google Scholar 

  • Ohl, A.I., Ohl, G.I.: 1979, A new method of very long-term prediction of solar activity. In: Donnelly, R. (ed.) Solar-Terrestrial Predictions Proceedings 2, NOAA/Space Environment Laboratory, Boulder, 258 – 263.

    Google Scholar 

  • Osherovich, V., Fainberg, J.: 2008, New method of solar maximum prediction with application to the next solar cycle. EoS Trans. AGU 89, Abstract SH13A-1505.

    Google Scholar 

  • Pesnell, W.D.: 2008, Predictions of solar cycle 24. Solar Phys. 252, 209 – 220. doi: 10.1007/s11207-008-9252-2 .

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2009, Predicting solar cycle 24 with geomagnetic precursors. In: AAS/Solar Physics Division Meeting 40, #11.05.

    Google Scholar 

  • Pesnell, W.: 2011, Predicting solar cycle 24 using Ap and F 10.7 as a geomagnetic precursor pair. Solar Phys., submitted.

  • Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7, 6.

    ADS  Google Scholar 

  • Podladchikova, T., Lefebvre, B., Van der Linden, R.: 2006, Peak sunspot number for solar cycle 24, quoted in Pesnell (2008).

  • Prochasta, R.: 2006, Climatological prediction submitted to panel, quoted in Pesnell (2008).

  • Qian, B., Rasheed, K.: 2004, Hurst exponent and financial market predictability. In: Hamza, M. (ed.) Financial Engineering and Applications (FEA 2004), November 8 – 10, 2004, MIT, Cambridge, 203 – 209. http://qianbo.myweb.uga.edu/research/Hurst.pdf .

    Google Scholar 

  • Quassim, M.S., Attia, A.F., Elminir, H.K.: 2007, Forecasting the peak amplitude of the 24th and 25th sunspot cycles and accompanying geomagnetic activity. Solar Phys. 243, 253 – 258. doi: 10.1007/s11207-007-0447-8 .

    Article  ADS  Google Scholar 

  • Rabin, D.: 2007, Forecast of the amplitude of solar cycle 24 based on the disturbed days precursor. Bull. Am. Astron. Soc. 210, 92.05.

    ADS  Google Scholar 

  • Roth, M.: 2006, ARMA prediction of solar cycle 24, quoted in Pesnell (2008).

  • Sargent, H.H. III: 1978, A prediction for the next sunspot cycle. In: Vehicular Technology Conference, 1978. 28th IEEE 28, 490 – 496. doi: 10.1109/VTC.1978.1622589 .

    Chapter  Google Scholar 

  • Schatten, K.: 2005, Fair space weather for solar cycle 24. Geophys. Res. Lett. 32, L21106. doi: 10.1029/2005GL024363 .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Pesnell, W.D.: 1993, An early solar dynamo prediction: Cycle 23 is approximately cycle 22. Geophys. Res. Lett. 20, 2275 – 2278. doi: 10.1029/93GL02431 .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5, 411 – 414.

    Article  ADS  Google Scholar 

  • Schepers, H.E., van Beek, J.H.G.M., Bassingthwaighte, J.B.: 1992, Comparison of four methods to estimate the fractal dimension from self-affine signals. IEEE Eng. Med. Biol. 11, 57 – 64.

    Article  Google Scholar 

  • Schrijver, C.J., Title, A.M.: 2011, Long-range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO. J. Geophys. Res. 116, A04108. doi: 10.1029/2010JA016224 .

    Article  ADS  Google Scholar 

  • Schwabe, H.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21, 233 – 234.

    Article  ADS  Google Scholar 

  • Sello, S.: 2003, Solar cycle activity: A preliminary prediction for cycle #24. Astron. Astrophys. 410, 691 – 693. doi: 10.1051/0004-6361:20031295 .

    Article  ADS  Google Scholar 

  • Simonsen, I., Hansen, A., Nes, O.M.: 1998, Determination of the Hurst exponent by use of wavelet transforms. Phys. Rev. E 58, 2779 – 2787. doi: 10.1103/PhysRevE.58.2779 .

    Article  ADS  Google Scholar 

  • Solanki, S.K., Krivova, N.A.: 2011, Analyzing solar cycles. Science 334(6058), 916 – 917. doi: 10.1126/science.1212555 . http://www.sciencemag.org/content/334/6058/916.short .

    Article  ADS  Google Scholar 

  • Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Unusual activity of the sun during recent decades compared to the previous 11,000 years. Nature 431(7012), 1084 – 1087. doi: 10.1038/nature02995 .

    Article  ADS  Google Scholar 

  • Suggs, R.J., Euler, H.J., Smith, S.: 2011, Future solar activity estimates for use in prediction of space environmental effects on spacecraft orbital lifetime and performance. Technical report, NASA, Marshall Space Flight Center. http://sail.msfc.nasa.gov/current_solar_report/CurRpt.pdf . File dated November 2011.

  • Suyal, V., Prasad, A., Singh, H.P.: 2009, Nonlinear time series analysis of sunspot data. Solar Phys. 260, 441 – 449. doi: 10.1007/s11207-009-9467-x .

    Article  ADS  Google Scholar 

  • Svalgaard, L., Cliver, E., Kamide, Y.: 2005, Cycle 24: The smallest sunspot cycle in 100 years? Geophys. Res. Lett. 32. doi: 10.1029/2004GL021664 .

  • Thompson, R.J.: 2008, Prediction for cycle 24 using minimum value of Ap (12-month average), quoted in Pesnell (2008).

  • Tlatov, A.: 2006, Indices of solar activity minimum of sunspot cycles and prediction solar cycle 24, quoted in Pesnell (2008).

  • Tritakis, V., Mavromichalaki, H., Giouvanellis, G.: 2006, Prediction of basic elements of the forthcoming solar cycles 24 and 25 (years 2005 – 2027). In: Solomos, N. (ed.) Recent Advances in Astronomy and Astrophysics: 7th Intern. Conf. Hellenic Astron. Soc., AIP CP-848, 154 – 162. doi: 10.1063/1.2347972 .

    Google Scholar 

  • Tsirulnik, L., Kuznetsova, T., Oraevsky, V.: 1997, Forecasting the 23rd and 24th solar cycles on the basis of MGM spectrum. Adv. Space Res. 20, 2369 – 2372. doi: 10.1016/S0273-1177(97)00909-5 .

    Article  ADS  Google Scholar 

  • Vaquero, J.M., Trigo, R.M.: 2008, Can the solar cycle amplitude be predicted using the preceding solar cycle length? Solar Phys. 250, 199 – 206. doi: 10.1007/s11207-008-9211-y .

    Article  ADS  Google Scholar 

  • Volobuev, D., Makarenko, N.: 2008, Forecast of the decadal average sunspot number. Solar Phys. 249, 121 – 133. doi: 10.1007/s11207-008-9167-y .

    Article  ADS  Google Scholar 

  • Wang, J.L., Gong, J.C., Liu, S.Q., Le, G.M., Sun, J.L.: 2002, The prediction of maximum amplitudes of solar cycles and the maximum amplitude of solar cycle 24. Chin. J. Astron. Astrophys. 2, 557 – 562.

    Article  ADS  Google Scholar 

  • Wang, J.L., Zong, W.G., Le, G.M., Zhao, H.J., Tang, Y.Q., Zhang, Y.: 2009, Letters: Predicting the start and maximum amplitude of solar cycle 24 using similar phases and a cycle grouping. Res. Astron. Astrophys. 9, 133 – 136. doi: 10.1088/1674-4527/9/2/002 .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 2009, Understanding the geomagnetic precursor of the solar cycle. Astrophys. J. 694, L11 – L15. doi: 10.1088/0004-637X/694/1/L11 .

    Article  ADS  Google Scholar 

  • Watari, S.: 2008, Forecasting solar cycle 24 using the relationship between cycle length and maximum sunspot number. Space Weather 6, S12003. doi: 10.1029/2008SW000397 .

    Article  ADS  Google Scholar 

  • Wilks, D.: 1995, Statistical Methods in the Atmospheric Sciences, Academic Press, San Diego.

    Google Scholar 

  • Withbroe, G.L.: 1989, Solar activity cycle – History and predictions. J. Spacecr. Rockets 26, 394 – 402. doi: 10.2514/3.26085 .

    Article  ADS  Google Scholar 

  • Xu, T., Wu, J., Wu, Z.S., Li, Q.: 2008, Long-term sunspot number prediction based on EMD analysis and AR model. Chin. J. Astron. Astrophys. 8, 337 – 342.

    Article  ADS  Google Scholar 

  • Yule, G.: 1927, VII. On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot number. Phil. Trans. Roy. Soc. London A 226, 267 – 298.

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA’s Solar Dynamics Observatory at the Goddard Space Flight Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Dean Pesnell.

Additional information

The Sun 360

Guest Editors: Bernhard Fleck, Bernd Heber, and Angelos Vourlidas

Appendix: Spotless Days

Appendix: Spotless Days

The term “spotless days” refers to a count of the number of days in an interval during which no sunspots were observed. The number of spotless days reaches a maximum near solar minimum and is a candidate both for determining the timing of solar minimum and as a precursor of the amplitude of the upcoming cycle. The current minimum had more spotless days than any minimum since 1920.

Is the number of spotless days in the minimum between Solar Cycles 23 and 24 an exception? Figure 6 shows the number of spotless days in each year from the NGDC International Sunspot Number dataset.Footnote 7 This file contains data for 70795 days from 1 Jan. 1818 through 31 Oct. 2011. There are 10547 days (15 %) with a sunspot number of zero (the most recent on 14 Aug. 2011) and 3247 days (5 %) without a recorded value. The latter days are not included in the spotless day analysis. The red line in Figure 6 is the annual-averaged sunspot number.

Figure 6
figure 6

The number of spotless days in each calendar year from 1818 through mid-2011 for the NGDC International Sunspot Number dataset is shown as the black curve. Annual-averaged sunspot number is shown in red. Created by solar/sunspots/plot_spotless_days.pro.

Some notes on data completeness can be derived from this figure. In all maxima since 1920 there are years at solar maximum when no spotless days are recorded. Maxima between 1850 and 1920 do not share this behavior, with spotless days appearing in some Carrington rotations near solar maximum. Observations before 1850 are very incomplete, with significant fractions of a year not having visible spots even near solar maximum. This indicates that the observations present an incomplete picture of the count of spotless days until Solar Cycle 15.

Is there a correlation between the number of spotless days in a solar cycle and the number of sunspots in either of the surrounding maxima? Figure 4 shows the correlation plot between the maximum annual number of spotless days as the abscissa and the maximum annual sunspot number as the ordinate. A linear fit of R n =178−0.30 SP n gives R 24=100 for SP24=265. This prediction required data one year past solar minimum to guarantee that the maximum in spotless days had passed.

After culling the data to include cycles after 1920, we only have seven points of similar totals to examine. If only that data is used, there is little correlation between the annual number of spotless days at solar minimum and the level of activity in the next solar maximum (see the dashed line in Figure 4).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesnell, W.D. Solar Cycle Predictions (Invited Review). Sol Phys 281, 507–532 (2012). https://doi.org/10.1007/s11207-012-9997-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-9997-5

Keywords

Navigation