Skip to main content
Log in

Origin of Coronal Shock Waves

Invited Review

  • RADIO PHYSICS AND THE FLARE-CME RELATIONSHIP
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The basic idea of the paper is to present transparently and confront two different views on the origin of large-scale coronal shock waves, one favoring coronal mass ejections (CMEs), and the other one preferring flares. For this purpose, we first review the empirical aspects of the relationship between CMEs, flares, and shocks (as manifested by radio type II bursts and Moreton waves). Then, various physical mechanisms capable of launching MHD shocks are presented. In particular, we describe the shock wave formation caused by a three-dimensional piston, driven either by the CME expansion or by a flare-associated pressure pulse. Bearing in mind this theoretical framework, the observational characteristics of CMEs and flares are revisited to specify advantages and drawbacks of the two shock formation scenarios. Finally, we emphasize the need to document clear examples of flare-ignited large-scale waves to give insight on the relative importance of flare and CME generation mechanisms for type II bursts/Moreton waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews, M.D.: 2003, A search for CMEs associated with big flares. Solar Phys. 218, 261 – 279. doi:10.1023/B:SOLA.0000013039.69550.bf.

    ADS  Google Scholar 

  • Asai, A., Yokoyama, T., Shimojo, M., Shibata, K.: 2004, Downflow motions associated with impulsive nonthermal emissions observed in the 2002 July 23 solar flare. Astrophys. J. 605, L77 – L80. doi:10.1086/420768.

    ADS  Google Scholar 

  • Aschwanden, M.J.: 2004, Physics of the Solar Corona. An Introduction, Springer, Berlin.

    Google Scholar 

  • Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Démoulin, P.: 2007, Coronal “wave”: magnetic footprint of a coronal mass ejection? Astrophys. J. 656, L101 – L104. doi:10.1086/512854.

    ADS  Google Scholar 

  • Balasubramaniam, K.S., Pevtsov, A.A., Neidig, D.F.: 2007, Are Moreton waves coronal phenomena? Astrophys. J. 658, 1372 – 1379. doi:10.1086/512001.

    ADS  Google Scholar 

  • Bárta, M., Vršnak, B., Karlický, M.: 2008, Dynamics of plasmoids formed by the current sheet tearing. Astron. Astrophys. 477, 649 – 655. doi:10.1051/0004-6361:20078266.

    MATH  ADS  Google Scholar 

  • Bárta, M., Karlický, M., Vršnak, B., Goossens, M.: 2007, MHD waves and shocks generated during magnetic field reconnection. Cent. Eur. Astrophys. Bull. 31, 165 – 180.

    ADS  Google Scholar 

  • Benz, A.O., Brajša, R., Magdalenić, J.: 2007, Are there radio-quiet solar flares? Solar Phys. 240, 263 – 270. doi:10.1007/s11207-007-0365-9.

    ADS  Google Scholar 

  • Biesecker, D.A., Myers, D.C., Thompson, B.J., Hammer, D.M., Vourlidas, A.: 2002, Solar phenomena associated with “EIT waves”. Astrophys. J. 569, 1009 – 1015. doi:10.1086/339402.

    ADS  Google Scholar 

  • Cane, H.V., Erickson, W.C.: 2005, Solar type II radio bursts and IP type II events. Astrophys. J. 623, 1180 – 1194. doi:10.1086/428820.

    ADS  Google Scholar 

  • Cane, H.V., Sheeley, N.R. Jr., Howard, R.A.: 1987, Energetic interplanetary shocks, radio emission, and coronal mass ejections. J. Geophys. Res. 92, 9869 – 9874.

    ADS  Google Scholar 

  • Chen, P.F.: 2006, The relation between EIT waves and solar flares. Astrophys. J. 641, L153 – L156. doi:10.1086/503868.

    ADS  Google Scholar 

  • Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202 – 1210. doi:10.1086/428084.

    ADS  Google Scholar 

  • Cho, K.S., Moon, Y.J., Dryer, M., Shanmugaraju, A., et al.: 2005, Examination of type II origin with SOHO/LASCO observations. J. Geophys. Res. (Space Phys.) 110, A12101. doi:10.1029/2004JA010744.

    ADS  Google Scholar 

  • Cho, K.S., Lee, J., Moon, Y.J., Dryer, M., et al.: 2007, A study of CME and type II shock kinematics based on coronal density measurement. Astron. Astrophys. 461, 1121 – 1125. doi:10.1051/0004-6361:20064920.

    ADS  Google Scholar 

  • Ciaravella, A., Raymond, J.C., Kahler, S.W., Vourlidas, A., Li, J.: 2005, Detection and diagnostics of a coronal shock wave driven by a partial-halo coronal mass ejection on 28 June 2000. Astrophys. J. 621, 1121 – 1128. doi:10.1086/427619.

    ADS  Google Scholar 

  • Cliver, E.W., Webb, D.F., Howard, R.A.: 1999, On the origin of solar metric type II bursts. Solar Phys. 187, 89 – 114.

    ADS  Google Scholar 

  • Cliver, E.W., Nitta, N.V., Thompson, B.J., Zhang, J.: 2004, Coronal shocks of November 1997 revisited: The CME type II timing problem. Solar Phys. 225, 105 – 139. doi:10.1007/s11207-004-3258-1.

    ADS  Google Scholar 

  • Cliver, E.W., Laurenza, M., Storini, M., Thompson, B.J.: 2005, On the origins of solar EIT waves. Astrophys. J. 631, 604 – 611. doi:10.1086/432250.

    ADS  Google Scholar 

  • Dauphin, C., Vilmer, N., Krucker, S.: 2006, Observations of a soft X-ray rising loop associated with a type II burst and a coronal mass ejection in the 03 November 2003 X-ray flare. Astron. Astrophys. 455, 339 – 348. doi:10.1051/0004-6361:20054535.

    ADS  Google Scholar 

  • Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., et al.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312.

    ADS  Google Scholar 

  • Delannée, C., Aulanier, G.: 1999, CME associated with transequatorial loops and a bald patch flare. Solar Phys. 190, 107 – 129.

    ADS  Google Scholar 

  • Dodson, H.W.: 1949, Position and development of the solar flares of 8 and 10 May 1949. Astrophys. J. 110, 382 – 386.

    ADS  Google Scholar 

  • Fletcher, L., Hannah, I.G., Hudson, H.S., Metcalf, T.R.: 2007, A TRACE white light and RHESSI hard X-ray study of flare energetics. Astrophys. J. 656, 1187 – 1196. doi:10.1086/510446.

    ADS  Google Scholar 

  • Forbes, T.G.: 1988, Shocks produced by impulsively driven reconnection. Solar Phys. 117, 97 – 121.

    ADS  Google Scholar 

  • Forbes, T.G., Priest, E.R.: 1983, A numerical experiment relevant to line-tied reconnection in two-ribbon flares. Solar Phys. 84, 169 – 188.

    ADS  Google Scholar 

  • Gallagher, P.T., Lawrence, G.R., Dennis, B.R.: 2003, Rapid acceleration of a coronal mass ejection in the low corona and implications for propagation. Astrophys. J. 588, L53 – L56. doi:10.1086/375504.

    ADS  Google Scholar 

  • Gary, G.A.: 2001, Plasma beta above a solar active region: Rethinking the paradigm. Solar Phys. 203, 71 – 86.

    ADS  Google Scholar 

  • Gary, D.E., Dulk, G.A., House, L., Illing, R., et al.: 1984, Type II bursts, shock waves, and coronal transients – The event of 29 June 1980, 0233 UT. Astron. Astrophys. 134, 222 – 233.

    ADS  Google Scholar 

  • Gilbert, H.R., Holzer, T.E.: 2004, Chromospheric waves observed in the He i spectral line (λ=10 830 Å): A closer look. Astrophys. J. 610, 572 – 587. doi:10.1086/421452.

    ADS  Google Scholar 

  • Gilbert, H.R., Thompson, B.J., Holzer, T.E., Burkepile, J.T.: 2001, A comparison of CME-associated atmospheric waves observed in coronal (19.5 nm) and chromospheric (He i 1083 nm and H-alpha 656 nm) lines. AGU Fall Meeting Abstracts, B746.

  • Gopalswamy, N.: 2006, Coronal Mass Ejections and Type II Radio Bursts, Washington DC American Geophysical Union Geophysical Monograph Series 165, 207–220.

  • Gopalswamy, N., Raulin, J.P., Kundu, M.R., Nitta, N., et al.: 1995, VLA and YOHKOH observations of an M1.5 flare. Astrophys. J. 455, 715 – 732. doi:10.1086/176618.

    ADS  Google Scholar 

  • Gopalswamy, N., Kaiser, M.L., Thompson, B.J., Burlaga, L.F., et al.: 2000, Radio-rich solar eruptive events. Geophys. Res. Lett. 27, 1427 – 1430.

    ADS  Google Scholar 

  • Gopalswamy, N., Aguilar-Rodriguez, E., Yashiro, S., Nunes, S., et al.: 2005, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. 110, A12 S07. doi:10.1029/2005JA011158.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., et al.: 2008, Radio-quiet fast and wide coronal mass ejections. Astrophys. J. 674, 560 – 569.

    ADS  Google Scholar 

  • Harrison, R.A., Bryans, P., Simnett, G.M., Lyons, M.: 2003, Coronal dimming and the coronal mass ejection onset. Astron. Astrophys. 400, 1071 – 1083. doi:10.1051/0004-6361:20030088.

    ADS  Google Scholar 

  • Harvey, G.A.: 1965, 2800 Megacycle per second radiation associated with type II and type IV solar radio bursts and the relation with other phenomena. J. Geophys. Res. 70, 2961.

    ADS  Google Scholar 

  • Holman, G.D., Pesses, M.E.: 1983, Solar type II radio emission and the shock drift acceleration of electrons. Astrophys. J. 267, 837 – 843. doi:10.1086/160918.

    ADS  Google Scholar 

  • Hudson, H.S., Warmuth, A.: 2004, Coronal loop oscillations and flare shock waves. Astrophys. J. 614, L85 – L88. doi:10.1086/425314.

    ADS  Google Scholar 

  • Hudson, H.S., Khan, J.I., Lemen, J.R., Nitta, N.V., Uchida, Y.: 2003, Soft X-ray observation of a large-scale coronal wave and its exciter. Solar Phys. 212, 121 – 149. doi:10.1023/A:1022904125479.

    ADS  Google Scholar 

  • Karlický, M.: 1984, Narrowband dm-spikes as indication of flare mass ejection. Solar Phys. 92, 329 – 342.

    ADS  Google Scholar 

  • Karlický, M.: 1988, Response of the current sheet to a time-limited enhancement of electrical resistivity. Bull. Astron. Inst. Czechoslov. 39, 13 – 23.

    ADS  Google Scholar 

  • Khan, J.I., Aurass, H.: 2002, X-ray observations of a large-scale solar coronal shock wave. Astron. Astrophys. 383, 1018 – 1031. doi:10.1051/0004-6361:20011707.

    ADS  Google Scholar 

  • Klassen, A., Aurass, H., Klein, K.L., Hofmann, A., Mann, G.: 1999, Radio evidence on shock wave formation in the solar corona. Astron. Astrophys. 343, 287 – 296.

    ADS  Google Scholar 

  • Klein, K.L., Khan, J.I., Vilmer, N., Delouis, J.M., Aurass, H.: 1999, X-ray and radio evidence on the origin of a coronal shock wave. Astron. Astrophys. 346, L53 – L56.

    ADS  Google Scholar 

  • Kołomański, S., Tomczak, M., Ronowicz, P., Karlický, M., Aurass, H.: 2007, Flare-associated X-ray plasma ejections and radio drifting structures. Cent. Eur. Astrophys. Bull. 31, 125 – 134.

    ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: 1987, Fluid Mechanics, 2nd edn., Oxford, Pergamon Press.

    MATH  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Vourlidas, A., Bougeret, J.L.: 2001, Tracing shock waves from the corona to 1 AU: Type II radio emission and relationship with CMEs. J. Geophys. Res. 106, 25301 – 25312. doi:10.1029/2000JA000260.

    ADS  Google Scholar 

  • Liu, C., Lee, J., Yurchyshyn, V., Deng, N., et al.: 2007, The eruption from a sigmoidal solar active region on 13 May 2005. Astrophys. J. 669, 1372 – 1381. doi:10.1086/521644.

    ADS  Google Scholar 

  • Magdalenić, J., Vršnak, B., Pohjolainen, S., Temmer, M., Aurass, H., Lehtinen, N.: 2008, Multi-wavelength study of coronal waves associated with the CME-flare event of 24 December 1996. Solar Phys. doi:10.1007/s11207-008-9220-x. This issue.

    Google Scholar 

  • Mancuso, S., Raymond, J.C.: 2004, Coronal transients and metric type II radio bursts. I. Effects of geometry. Astron. Astrophys. 413, 363 – 371. doi:10.1051/0004-6361:20031510.

    ADS  Google Scholar 

  • Mancuso, S., Raymond, J.C., Kohl, J., Ko, Y.K., Uzzo, M., Wu, R.: 2002, UVCS/SOHO observations of a CME-driven shock: Consequences on ion heating mechanisms behind a coronal shock. Astron. Astrophys. 383, 267 – 274. doi:10.1051/0004-6361:20011721.

    ADS  Google Scholar 

  • Mann, G.: 1995, Simple magnetohydrodynamic waves. J. Plasma Phys. 53, 109 – 125.

    Article  ADS  Google Scholar 

  • Mann, G., Klassen, A.: 2005, Electron beams generated by shock waves in the solar corona. Astron. Astrophys. 441, 319 – 326. doi:10.1051/0004-6361:20034396.

    ADS  Google Scholar 

  • Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.: 2004, Coronal mass ejection of 15 May 2001: I. Evolution of morphological features of the eruption. Solar Phys. 225, 337 – 353. doi:10.1007/s11207-004-3748-1.

    ADS  Google Scholar 

  • Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Solar Phys. 241, 99 – 112. doi:10.1007/s11207-007-0291-x.

    ADS  Google Scholar 

  • Michalek, G., Gopalswamy, N., Xie, H.: 2007, Width of radio-loud and radio-quiet CMEs. Solar Phys. 246, 409 – 414. doi:10.1007/s11207-007-9062-y.

    ADS  Google Scholar 

  • Moreton, G.E.: 1960, Hα Observations of flare-initiated disturbances with velocities ≈1000 km s−1. Astron. J. 65, 494 – 495. doi:10.1086/108346.

    Google Scholar 

  • Moreton, G.E., Ramsey, H.E.: 1960, In: Recent Observations of Dynamical Phenomena Associated with Solar Flares CS-72, Astron. Soc. Pac., San Francisco, 357 – 358.

    Google Scholar 

  • Moses, D., Clette, F., Delaboudinière, J.P., Artzner, G.E., et al.: 1997, EIT observations of the extreme ultraviolet sun. Solar Phys. 175, 571 – 599. doi:10.1023/A:1004902913117.

    ADS  Google Scholar 

  • Narukage, N., Hudson, H.S., Morimoto, T., Akiyama, S., et al.: 2002, Simultaneous observation of a Moreton wave on 3 November 1997 in Hα and soft X-rays. Astrophys. J. 572, L109 – L112. doi:10.1086/341599.

    ADS  Google Scholar 

  • Nelson, G.J., Melrose, D.B.: 1985, Type II bursts. In: Solar Radiophysics, Cambridge University Press, Cambridge, 333 – 359.

    Google Scholar 

  • Neupert, W.M.: 1989, Transient coronal extreme ultraviolet emission before and during the impulsive phase of a solar flare. Astrophys. J. 344, 504 – 512. doi:10.1086/167819.

    ADS  Google Scholar 

  • Payne-Scott, R., Yabsley, D.E., Bolton, J.G.: 1947, Relative times of arrival of solar noise on different radio frequencies. Nature 160, 256 – 257.

    ADS  Google Scholar 

  • Pick, M., Malherbe, J.M., Kerdraon, A., Maia, D.J.F.: 2005, On the disk Hα and radio observations of the 28 October 2003 flare and coronal mass ejection event. Astrophys. J. 631, L97 – L100. doi:10.1086/497137.

    ADS  Google Scholar 

  • Plunkett, S.P., Vourlidas, A., Šimberová, S., Karlický, M., Kotrč, P., Heinzel, P., Kupryakov, Y.A., Guo, W.P., Wu, S.T.: 2000, Simultaneous SOHO and ground-based observations of a large eruptive prominence and coronal mass ejection. Solar Phys. 194, 371 – 391.

    ADS  Google Scholar 

  • Pohjolainen, S., Lehtinen, N.J.: 2006, Slow halo CMEs with shock signatures. Astron. Astrophys. 449, 359 – 367. doi:10.1051/0004-6361:20054118.

    ADS  Google Scholar 

  • Priest, E.R.: 1982, Solar Magneto-Hydrodynamics, Reidel, Dordrecht.

    Google Scholar 

  • Ramsey, H.E., Smith, S.F.: 1966, Flare-initiated filament oscillations. Astron. J. 71, 197 – 199.

    ADS  Google Scholar 

  • Raymond, J.C., Thompson, B.J., St. Cyr, O.C., Gopalswamy, N., et al.: 2000, SOHO and radio observations of a CME shock wave. Geophys. Res. Lett. 27, 1439 – 1442. doi:10.1029/1999GL003669.

    ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Plunkett, S.P., Prestage, N.P., Manning, R.: 2000, Radio tracking of a white-light coronal mass ejection from solar corona to interplanetary medium. Astrophys. J. 529, L53 – L56. doi:10.1086/312446.

    ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Gopalswamy, N., Aurass, H., et al.: 2001, Statistical analysis of coronal shock dynamics implied by radio and white-light observations. J. Geophys. Res. 106, 25279 – 25290. doi:10.1029/2000JA004024.

    ADS  Google Scholar 

  • Reiner, M.J., Krucker, S., Gary, D.E., Dougherty, B.L., Kaiser, M.L., Bougeret, J.L.: 2007, Radio and white-light coronal signatures associated with the RHESSI hard X-ray event of 23 July 2002. Astrophys. J. 657, 1107 – 1116. doi:10.1086/510827.

    ADS  Google Scholar 

  • Riley, P., Lionello, R., Mikić, Z., Linker, J., et al.: 2007, “Bursty” reconnection following solar eruptions: MHD simulations and comparison with observations. Astrophys. J. 655, 591 – 597. doi:10.1086/509913.

    ADS  Google Scholar 

  • Russell, C.T., Mulligan, T.: 2002, On the magnetosheath thicknesses of interplanetary coronal mass ejections. Planet. Space Sci. 50, 527 – 534.

    ADS  Google Scholar 

  • Saito, K.: 1970, A non-spherical axisymmetric model of the solar K corona of the minimum type. Ann. Obs. Astron. Tokyo 12, 53 – 120.

    ADS  Google Scholar 

  • Sedov, L.I.: 1959, Similarity and Dimensional Methods in Mechanics, Academic Press, New York.

    MATH  Google Scholar 

  • Shanmugaraju, A., Moon, Y.J., Vršnak, B.: 2008, Type II radio bursts with high and low starting frequencies. Solar Phys. submitted.

  • Shanmugaraju, A., Moon, Y.J., Dryer, M., Umapathy, S.: 2003, An investigation of solar maximum metric type II radio bursts: Do two kinds of coronal shock sources exist? Solar Phys. 215, 161 – 184.

    ADS  Google Scholar 

  • Shanmugaraju, A., Moon, Y.J., Cho, K.S., Kim, Y.H., Dryer, M., Umapathy, S.: 2005, Multiple type II solar radio bursts. Solar Phys. 232, 87 – 103. doi:10.1007/s11207-005-1586-4.

    ADS  Google Scholar 

  • Sheeley, N.R. Jr., Howard, R.A., Koomen, M.J., Michels, D.J.: 1983, Associations between coronal mass ejections and soft X-ray events. Astrophys. J. 272, 349 – 354. doi:10.1086/161298.

    ADS  Google Scholar 

  • Sheeley, N.R. Jr., Howard, R.A., Michels, D.J., Koomen, M.J., et al.: 1985, Coronal mass ejections and interplanetary shocks. J. Geophys. Res. 90, 163 – 175.

    ADS  Google Scholar 

  • Srivastava, N., Schwenn, R., Inhester, B., Martin, S.F., Hanaoka, Y.: 2000, Factors related to the origin of a gradual coronal mass ejection associated with an eruptive prominence on 21 – 22 June 1998. Astrophys. J. 534, 468 – 481. doi:10.1086/308749.

    ADS  Google Scholar 

  • Steinolfson, R.S.: 1984, Type II radio emission in coronal transients. Solar Phys. 94, 193 – 202.

    ADS  Google Scholar 

  • Stewart, R.T., Magun, A.: 1980, Radio evidence for electron acceleration by transverse shock waves in herringbone Type II solar bursts. Proc. Astron. Soc. Aust. 4, 53 – 55.

    ADS  Google Scholar 

  • Subramanian, K.R., Ebenezer, E.: 2006, A statistical study of the characteristics of type II doublet radio bursts. Astron. Astrophys. 451, 683 – 690. doi:10.1051/0004-6361:20054215.

    ADS  Google Scholar 

  • Švestka, Z., Fritzová-Švestková, L.: 1974, Type II radio bursts and particle acceleration. Solar Phys. 36, 417 – 431. doi:10.1007/BF00151211.

    ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Vršnak, B., Rybák, J., et al.: 2008, Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys. J. 673, L95 – L98. doi:10.1086/527414.

    ADS  Google Scholar 

  • Thompson, B.J., Cliver, E.W., Nitta, N., Delannée, C., Delaboudinière, J.P.: 2000, Coronal dimmings and energetic CMEs in April – May 1998. Geophys. Res. Lett. 27, 1431 – 1434. doi:10.1029/1999GL003668.

    ADS  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on 12 May 1997. Geophys. Res. Lett. 25, 2465 – 2468. doi:10.1029/98GL50429.

    ADS  Google Scholar 

  • Uchida, Y.: 1968, Propagation of hydromagnetic disturbances in the solar corona and moreton’s wave phenomenon. Solar Phys. 4, 30 – 44. doi:10.1007/BF00146996.

    ADS  Google Scholar 

  • Uchida, Y.: 1974, Behavior of the flare produced coronal MHD wavefront and the occurrence of type II radio bursts. Solar Phys. 39, 431 – 449.

    ADS  Google Scholar 

  • Volonskaya, N.N., Volonskaya, T.N., Semenov, V.S., Biernat, H.K.: 2003, Enargy and momentum balance in the process of time-dependent magnetic Petschek-type reconnection. Int. J. Geomagn. Aeron. 3, 245 – 253.

    Google Scholar 

  • Vršnak, B.: 2001, Solar flares and coronal shock waves. J. Geophys. Res. 106, 25291 – 25300. doi:10.1029/2000JA004009.

    ADS  Google Scholar 

  • Vršnak, B., Lulić, S.: 2000, Formation of coronal MHD shock waves – I. The basic mechanism. Solar Phys. 196, 157 – 180.

    ADS  Google Scholar 

  • Vršnak, B., Ruždjak, V., Zlobec, P., Aurass, H.: 1995, Ignition of MHD shocks associated with solar flares. Solar Phys. 158, 331 – 351.

    ADS  Google Scholar 

  • Vršnak, B., Warmuth, A., Brajša, R., Hanslmeier, A.: 2002a, Flare waves observed in Helium i 10 830 Å. A link between Hα Moreton and EIT waves. Astron. Astrophys. 394, 299 – 310. doi:10.1051/0004-6361:20021121.

    ADS  Google Scholar 

  • Vršnak, B., Magdalenić, J., Aurass, H., Mann, G.: 2002b, Band-splitting of coronal and interplanetary type II bursts. II. Coronal magnetic field and Alfvén velocity. Astron. Astrophys. 396, 673 – 682. doi:10.1051/0004-6361:20021413.

    ADS  Google Scholar 

  • Vršnak, B., Maričić, D., Stanger, A.L., Veronig, A.: 2004, Coronal mass ejection of 15 May 2001: II. Coupling of the CME acceleration and the flare energy release. Solar Phys. 225, 355 – 378. doi:10.1007/s11207-004-4995-x.

    ADS  Google Scholar 

  • Vršnak, B., Warmuth, A., Temmer, M., Veronig, A., et al.: 2006, Multi-wavelength study of coronal waves associated with the CME-flare event of 3 November 2003. Astron. Astrophys. 448, 739 – 752. doi:10.1051/0004-6361:20053740.

    ADS  Google Scholar 

  • Vršnak, B., Maričić, D., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections: I. Temporal and spatial scales. Solar Phys. 241, 85 – 98. doi:10.1007/s11207-006-0290-3.

    ADS  Google Scholar 

  • Wagner, W.J., MacQueen, R.M.: 1983, The excitation of type II radio bursts in the corona. Astron. Astrophys. 120, 136 – 138.

    ADS  Google Scholar 

  • Warmuth, A., Mann, G.: 2005, A model of the Alfvén speed in the solar corona. Astron. Astrophys. 435, 1123 – 1135. doi:10.1051/0004-6361:20042169.

    ADS  Google Scholar 

  • Warmuth, A., Mann, G., Aurass, H.: 2005, First soft X-ray observations of global coronal waves with the GOES solar X-ray imager. Astrophys. J. 626, L121 – L124. doi:10.1086/431756.

    ADS  Google Scholar 

  • Warmuth, A., Vršnak, B., Aurass, H., Hanslmeier, A.: 2001, Evolution of two EIT/Hα Moreton waves. Astrophys. J. 560, L105 – L109. doi:10.1086/324055.

    ADS  Google Scholar 

  • Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004a, A multiwavelength study of solar flare waves. I. Observations and basic properties. Astron. Astrophys. 418, 1101 – 1115. doi:10.1051/0004-6361:20034332.

    ADS  Google Scholar 

  • Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004b, A multiwavelength study of solar flare waves. II. Perturbation characteristics and physical interpretation. Astron. Astrophys. 418, 1117 – 1129. doi:10.1051/0004-6361:20034333.

    ADS  Google Scholar 

  • White, S.M.: 2007, Solar radio bursts and space weather. Asian J. Phys. 16, 189 – 207.

    Google Scholar 

  • White, S.M., Thompson, B.J.: 2005, High-cadence radio observations of an EIT wave. Astrophys. J. 620, L63 – L66. doi:10.1086/428428.

    ADS  Google Scholar 

  • Wild, J.P., McCready, L.L.: 1950, Observations of the spectrum of high-intensity solar radiation at metre wavelengths. I. The apparatus and spectral types of solar burst observed. Aust. J. Sci. Res. A Phys. Sci. 3, 387 – 398.

    ADS  Google Scholar 

  • Zhang, J.: 2005, A study on the acceleration of coronal mass ejections. In: Dere, K., Wang, J., Yan, Y. (eds.) Coronal and Stellar Mass Ejections, IAU Symp. 226, 65–70.

  • Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100 – 1109. doi:10.1086/506903.

    ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559, 452 – 462. doi:10.1086/322405.

    ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Vourlidas, A.: 2004, A study of the kinematic evolution of coronal mass ejections. Astrophys. J. 604, 420 – 432. doi:10.1086/381725.

    ADS  Google Scholar 

  • Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705 – 716. doi:10.1051/0004-6361:20040351.

    ADS  Google Scholar 

  • Žic, T., Vršnak, B., Temmer, M., Jacobs, C.: 2008, Cylindrical and spherical pistons as drivers of MHD shocks. Solar Phys. doi:10.1007/s11207-008-9173-0. This issue.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Vršnak.

Additional information

Radio Physics and the Flare-CME Relationship

Guest Editors: Karl-Ludwig Klein and Silja Pohjolainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vršnak, B., Cliver, E.W. Origin of Coronal Shock Waves. Sol Phys 253, 215–235 (2008). https://doi.org/10.1007/s11207-008-9241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-008-9241-5

Keywords

Navigation