Skip to main content
Log in

IRG2016: RBF-based regional geoid model of Iran

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The aim of this research is the optimal determination of the regional geoid model of Iran based on radial basis functions (RBFs). In this case, the type and number of RBFs, their horizontal positions, depths, and unknown coefficients must be properly determined. The quality of calculations strongly depends on the correct choice of these unknown parameters. Given the precise geocentric position of any point on the Earth’s surface with the beginning of the global navigation satellite system (GNSS), the surface gravity disturbances were used to calculate the height anomaly according to Molodensky’s theory. The residual surface gravity disturbances derived by subtracting the global gravitational model EIGEN-6C4 up to degree and order 360 were applied to determine the unknown RBF parameters using the stabilized orthogonal matching pursuit (SOMP) algorithm. Based on this iterative sparse approach, non-zero components of unknown RBF parameters having the maximum recoverable energy for the desired signal were found at each iteration. The SOMP algorithm was applied for optimal determination of the proper basis functions since each unknown RBF coefficient is related to a specific basis function. Only the RBFs representing the best solution to the problem were selected at each iteration, then several new RBFs were added at suitable positions to enhance the calculation result. The new RBF-based regional geoid model entitled IRG2016 was calculated by applying the geoid-to-quasigeoid corrections to the height anomaly. The IRG2016 was fitted to 1288 GNSS/levelling control points over Iran, by applying the polynomial corrector surface. Relying on this new strategy, the calculated height reference surface shows an RMS value of approximately 0.23 m for the difference in geoidal height at the independent control points, which is comparable with the last Stokes-based geoid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allister N.A. and Featherstone W.E., 2001. Estimation of Helmert orthometric heights using digital barcode levelling, observed gravity and topographicmass-density data over part of Darling Scarp,Western Australia. Geom. Res. Aust., 75, 25–52.

    Google Scholar 

  • Ardalan A.A., 1999. High Resolution Regional Geoid Computation in the World Geodetic Datum 2000 Based upon Collocation of Linearized Observational Functionals of the Type Gravity Potential and Gravity Intensity. PhD Thesis. Stuttgart University, Stuttgart, Germany, 250 pp.

    Google Scholar 

  • Bagherbandi M. and Tenzer R., 2013. Geoid-to-quasigeoid separation computed using the GRACE/GOCE global geopotential model GOCO02S -a case study of Himalayas, Tibet and central Siberia. Terr. Atmos. Ocean Sci., 24, 59–68.

    Article  Google Scholar 

  • Barthelmes F., 1986. Untersuchungen zur Approximation des ausseren Gravitations-feldes der Erde durch Punktmassen mit optimierten Positionen. Veroffentlichungen des Zentralinstituts für Physik der Erde, Nr. 02, Potsdam, Germany (in German).

    Google Scholar 

  • Bentel K., Schmidt M. and Gerlach C., 2013. Different radial basis functions and their applicability for regional gravity field representation on the sphere. GEM-Int. J. Geomath., 4(1), 67–96.

    Article  Google Scholar 

  • Bjerhammar A., 1976. A Dirac approach to physical geodesy. Z. Vermessungswesen, 101, 41–44.

    Google Scholar 

  • Donoho D.L., and Huo X., 2001. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory, 47, 2845–2862.

    Article  Google Scholar 

  • Eicker A., 2008. Gravity field Refinement by Radial Basis Functions from In-Situ Satellite Data. PhD Thesis. University Bonn, Bonn, Germany.

    Google Scholar 

  • Eicker A., Schall J. and Kusche J., 2014. Regional gravity modelling from spaceborne data: case studies with GOCE. Geophys. J. Int., 196, 1431–1440.

    Article  Google Scholar 

  • Fecher T., Pail R., Gruber T. and the GOCE Project Team, 2016. The combined gravity field model GOCO05c. Geophys. Res. Abs., 18, EGU2016–7696.

    Google Scholar 

  • Fischer D., 2011. Sparse Regularization of a Joint Inversion of Gravitational Data and Normal Mode Anomalies. PhD Thesis. Department of Mathematics, University of Siegen, Siegen, Germany.

    Google Scholar 

  • Flury J. and Rummel R., 2009. On the geoid-quasigeoid separation in mountain areas. J. Geodesy, 83, 829–847.

    Article  Google Scholar 

  • Förste C., Bruinsma S.L., Abrikosov O., Lemoine J.-M., Marty J.C., Flechtner F., Balmino G., Barthelmes F. and Biancale R., 2015. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, GFZ Potsdam, Germany, DOI: 10.5880/icgem.2015.1.

    Google Scholar 

  • Freeden W., Fehlinger T., Klug M., Mather D. and Wolf K., 2009. Classical globally reference gravity field determination in modern local oriented multiscale framework. J. Geodesy, 83, 1171–1191.

    Article  Google Scholar 

  • Gilardoni M., Reguzzoni M. and D. Sampietro, 2015. GECO: a global gravity model by locally combining GOCE data and EGM2008. Stud. Geophys. Geod., 60, 228–247, DOI: 10.1007/s11200-015-1114-14.

    Article  Google Scholar 

  • Hamesh M. and Zomorrodian H., 1992. Iranian gravimetric geoid determination, second step. NCC J. Surv., 6, 17–24, 52–63.

    Google Scholar 

  • Hansen P.C., 1987. The truncated SVD as a method for regularization. BIT Comput. Sci. Numer. Math., 27, 534–553.

    Article  Google Scholar 

  • Hansen P.C., 1992. Analysis of discrete ill-posed problem by means of the L-curve. SIAM Rev., 34, 561–580.

    Article  Google Scholar 

  • Hatam C.Y., 2010. Etablissement des nouveaux reseaux multi-observations geodesiques et gravimetriques et determination du geoide en Iran. PhD Thesis. Geophysics, University Montpellier 2, Montpellier, France (in French).

    Google Scholar 

  • Heikkinen M., 1981. Solving the Shape of the Earth by Using Digital Density Models. Report 81:2. Finnish Geodetic Institute, Helsinki, Finland.

    Google Scholar 

  • Heiskanen WA. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Co., San Francisco, CA.

    Google Scholar 

  • Kiamehr R., 2006. Precise Gravimetric Geoid Model for Iran Based on GRACE and SRTM Data and the Least-Squares Modification of Stokes’ Formula: with Some Geodynamic Interpretations. PhD Thesis. Royal Institute of Technology, Stockholm, Sweden.

    Google Scholar 

  • Klees R. and Wittwer T., 2007. A data-adaptive design of a spherical basis function network for gravity field modeling. In: Tregoning P. and Rizos C. (Eds), Dynamic Planet -Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools. International Association of Geodesy Symposia, 130, Springer-Verlag, Berlin, Heidelberg, Germany, 303–328.

    Google Scholar 

  • Klees R., Tenzer R., Prutkin I. and Wittwer T., 2008. A data-driven approach to local gravity field modeling using spherical radial basis functions. J. Geodesy, 82, 457–471.

    Article  Google Scholar 

  • Koch K.R. and Kusche J., 2002. Regularization of geopotential determination from satellite data by variance components. J. Geodesy, 76, 259–268.

    Article  Google Scholar 

  • Kotsakis C. and Sideris M.G., 1999. On the adjustment of combined GPS/levelling/geoid networks. J. Geodesy, 73, 412–442.

    Article  Google Scholar 

  • Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. and Olson T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Technical Report NASA/TP-1996/8-206861, NASA, Greenbelt, Maryland, MD.

    Google Scholar 

  • Mallat S.G., and Zhang Z., 1993. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process., 41, 3397–3415.

    Article  Google Scholar 

  • Marchenko A.N., 1998. Parameterization of the Earth’s Gravity Field: Point and Line Singularities. Lviv Astronomical and Geodetical Society, Lviv, Ukraine.

    Google Scholar 

  • Marchenko A.N., Barthelmes F., Meyer U. and Schwintzer P., 2001. Regional Geoid Determination: an Application to Airborne Gravimetry Data in the Skagerrak. ScientificTechnical Report 01/07, GeoForschungsZentrum Potsdam, Potsdam, Germany.

    Google Scholar 

  • Michel V. and Orzlowski S., 2017. On the convergence theorem for the regularized functional matching pursuit (RFMP) algorithm. GEM-Int. J. Geomath., DOI: 10.1007/s13137-017-0095-6 (in print).

    Google Scholar 

  • Michel V. and Telschow R., 2016. The regularized orthogonal functional matching pursuit for illposed inverse problems. SIAM J. Numer. Anal., 54, 262–287

    Article  Google Scholar 

  • Moritz H., 1980. Advanced Physical Geodesy. Wichmann, Karlsruhe, Germany.

    Google Scholar 

  • Nahavandchi H. and Soltanpour A., 2005. Improved determination of heights using a conversion surface by combining gravimetric quasi/geoid and GPS-levelling height differences. Stud. Geophys. Geod., 50, 165–180.

    Article  Google Scholar 

  • Najafi M., 2004. Determination of Precise Geoid for Iran Based on Stokes-Helmert Scheme. Report 2003. TOTAK Project, National Cartographic Center of Iran (NCC), Tehran, Iran.

    Google Scholar 

  • Needell D. and Vershynin R., 2008. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math., 9, 317–334.

    Article  Google Scholar 

  • Needell D. and Tropp J., 2009. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal., 26, 301–321.

    Article  Google Scholar 

  • Panet I., Kuroishi Y. and Holschneider M., 2011. Wavelet modelling of the gravity field by domain decomposition methods: an example over Japan. Geophys. J. Int., 184, 203–219.

    Article  Google Scholar 

  • Pati Y.C., Rezaiifar R. and Krishnaprasad P.S., 1993. Orthogonal matching pursuit: pecursive function approximation with application to wavelet decomposition. Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, IEEE Computer Society Press, 40–44, DOI: 10.1109/ACSSC.1993.342465.

    Chapter  Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth gravitational model 2008 (EGM2008). J. Geophys. Res., 117, B04406, DOI: 10.1029 /2011JB008916.

    Article  Google Scholar 

  • Philips D., 1962. A technique for numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Machin., 9, 84–87.

    Article  Google Scholar 

  • Ries J., Bettadpur S., Eanes R., Kang Z., Ko U., McCullough C., Nagel P., Pie N., Poole S., Richter T., Save H. and Tapley B., 2016. The Combined Gravity Model GGM05C. GFZ Data Services, GFZ Potsdam, Potsdam, Germany, DOI: 10.5880/icgem.2016.002.

    Google Scholar 

  • Saadat S.A., Safari A. and Needell D., 2016. Sparse reconstruction of regional gravity signal based on Stabilized Orthogonal Matching Pursuit (SOMP). Pure Appl. Geophys., 173, 2087–2099.

    Article  Google Scholar 

  • Safari A., Ardalan A.A. and Grafarend E.W., 2005. A new ellipsoidal gravimetric, satellite altimetry and astronomic boundary value problem, a case study: The geoid of Iran. J. Geodyn., 39, 545–568.

    Article  Google Scholar 

  • Sansò F. and Tscherning C.C., 2003. Fast spherical collocation: theory and examples. J. Geodesy, 77, 101–112.

    Article  Google Scholar 

  • Santos M.C., Vaníček P., Featherstone W.E., Kingdon R., Ellmann A., Martin B-A., Kuhn M. and Tenzer R., 2006. The relation between rigorous and Helmert’s definitions of orthometric heights. J. Geodesy, 80, 691–704.

    Article  Google Scholar 

  • Schmidt M., Fengler M., Mayer-Gürr T., Eicker A., Kusche J., Sanchez L. and Han S., 2007. Regional gravity field modelling in terms of spherical base functions. J. Geodesy, 81, 17–38.

    Article  Google Scholar 

  • Sedighi M., Najafi-Alamdari M. and Tabatabaie S.H., 2008. Gravity field implied density modeling, for precise determination of the geoid. J. Appl. Sci., 8, 3371–3379.

    Article  Google Scholar 

  • Sjöberg L.E., 2006. A refined conversion from normal height to orthometric height. Stud. Geophys. Geod., 50, 595–606.

    Article  Google Scholar 

  • Sjöberg L.E., 2010. A strict formula for geoid-to-quasigeoid separation. J. Geodesy, 84, 699–702.

    Article  Google Scholar 

  • Sjöberg L.E., 2012. The geoid-to-quasigeoid difference using an arbitrary gravity reduction model. Stud. Geophys. Geod., 56, 929–933.

    Article  Google Scholar 

  • Sjöberg L.E. and Bagherbandi M., 2012. Quasigeoid-to-geoid determination by EGM08. Earth Sci. Inform., 5, 87–91.

    Article  Google Scholar 

  • Tenzer R. and Vaníček P., 2003. Correction to Helmert’s orthometric height due to actual lateral variation of topographical density. Rev. Brasil. Cartogr., 55(2), 44–47.

    Google Scholar 

  • Tenzer R., Vaníček P., Santos M., Featherstone W.E. and Kuhn M., 2005. The rigorous determination of orthometric heights. J. Geodesy, 79, 82–92.

    Article  Google Scholar 

  • Tenzer R., Moore P., Novák P., Kuhn M. and Vaníček P., 2006. Explicit formula for the geoid-toquasigeoid separation. Stud. Geophys. Geod., 50, 607–618.

    Article  Google Scholar 

  • Tenzer R. and Klees R., 2008. The choice of the spherical radial basis functions in local gravity field modeling. Stud. Geophys. Geod., 52, 287–304.

    Article  Google Scholar 

  • Tenzer R., Klees R. and Wittwer T., 2012. Local gravity field modelling in rugged terrain using spherical radialbasis functions: case study for the Canadian Rocky Mountains. In: Kenyon S., Pacino M.C. and Marti U. (Eds), Geodesy for Planet Earth. International Association of Geodesy Symposia, 136, Springer-Verlag, Heidelberg, Germany, 401–409.

    Article  Google Scholar 

  • Tenzer R., Hirt Ch., Claessens S. and Novák P., 2015. Spatial and spectral representations of the geoid-to-quasigeoid correction. Surv. Geophys., 36, 627–658.

    Article  Google Scholar 

  • Tenzer R., Hirt Ch., Novák P., Pitonák M. and Šprlák M., 2016. Contribution of mass density heterogeneities to the quasigeoid-to-geoid separation. J. Geodesy, 90, 65–80, DOI: 10.1007 /s00190-015-0858-5.

    Article  Google Scholar 

  • Tikhonov A.N., 1963. Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl., 4, 1035–1038 (in Russian, translated in Solution of incorrectly formulated problems and the regularization method, Soviet Mathematics, 4, 1035-1038).

    Google Scholar 

  • Tropp J.A. and Gilbert A.C., 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 53, 4655–4666.

    Article  Google Scholar 

  • Vaníček P. and Krakiwsky E., 1982. Geodesy, the Concepts. North-Holland Publishing Company, New York.

    Google Scholar 

  • Vaníček P., Tenzer R., Sjöberg L.E., Martinec Z. and Featherstone W.E., 2005. New views of the spherical Bouguer gravity anomaly. Geophys. J. Int., 159, 460–472.

    Article  Google Scholar 

  • Vermeer M., 1992. Geoid determination with mass point frequency domain inversion in the Mediterranean. GEOMED Report 2. Mare Nostrum, Madrid, Spain, 109–119.

    Google Scholar 

  • Wang S., Panet I., Ramillien G. and Guilloux F., 2017. Multi-scale modeling of Earth’s gravity field in space and time. J. Geodyn., 106, 46–65, DOI: 10.1016/j.jog.2017.02.001.

    Article  Google Scholar 

  • Weber G. and Zomorrodian, H., 1988. Regional geopotential model improvement for the Iranian geoid determination. Bull. Géod., 62, 125–141.

    Article  Google Scholar 

  • Wenzel H.G., 1985. Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde. Wissenschaftliche Arbetien der Fachrichtung Vermessungswesen der Universität Hannover, Nr.137, Hannover, Germany (in German).

    Google Scholar 

  • Wittwer T., 2009. Regional Gravity Field Modeling with Radial Basis Function. PhD Thesis. Technical University of Delft, Delft, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdoreza Saadat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadat, A., Safari, A. & Needell, D. IRG2016: RBF-based regional geoid model of Iran. Stud Geophys Geod 62, 380–407 (2018). https://doi.org/10.1007/s11200-016-0679-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-016-0679-x

Keywords

Navigation