Skip to main content

Advertisement

Log in

Monitoring-based discrimination of pathways of traffic-derived pollutants

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We conducted a systematic monitoring study of roadside pollution based on surface-based samplers (U-channels) and samplers at different heights (poles). The study aim was to discriminate pathways of traffic-derived pollutants by surface runoff, splash water and airborne transport, and to assess the use of magnetic parameters for efficient monitoring concepts. At two high traffic density roads in southern Germany, we installed vertical poles at 0.5-m and 1.5-m distances from the roadside with samplers at various heights (surface, 0.5 m and 2 m), along with 4-m long U-channels (at the surface and 2.5 cm above it) perpendicular to the road. Clean quartz sand was used as collector material. Mass-specific magnetic susceptibility (χ), heavy metal (HM) and polycyclic aromatic hydrocarbon (PAH) concentrations all showed a significant increase over one year in pole and U-channel collectors. Systematic differences of χ, PAH and HM concentrations in samples at various heights and distances from the road indicate a common pathway of magnetic particles and pollutants and a dominance of splash-water transport. A magnetite-like phase turned out to be responsible for the enhancement of χ. Significant positive correlations between χ and total PAHs as well as HMs suggest that χ can be used as a proxy for traffic-derived PAH and HM pollution. The results of our monitoring studies could be used to provide basic knowledge to support the development of new monitoring approaches for traffic-derived pollution along roadsides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amereih S., Meisel T., Scholger R. and Wegscheider W., 2005. Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS. J. Environ. Monit., 7, 1200–1206.

    Article  Google Scholar 

  • Bućko M.S., Magiera T., Pesonen L.J. and Janus B., 2010. Magnetic, geochemical, and microstructural characteristics of road dust on roadsides with different traffic volumes-case study from Finland. Water Air Soil Pollut., 209, 295–306.

    Article  Google Scholar 

  • Bućko M.S., Magiera T., Johanson B., Petrovský E. and Pesonen L.J., 2011. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses. Environ. Pollut., 159, 266–1276.

    Article  Google Scholar 

  • Chaparro M.A.E., Marie D.C., Gogorza C.S.G., Navas A. and Sinito A.M., 2010. Magnetic studies and scanning electron microscopy X-ray energy dispersive spectroscopy analyses of road sediments, soils, and vehicle-derived emissions. Stud. Geophys. Geod., 54, 633–650.

    Article  Google Scholar 

  • Councell T.B., Duckenfield K.U., Landa E.R. and Callender E., 2004. Tire wears particles as a source of Zn to the environment. Environ. Sci. Technol., 38, 4206–4214.

    Article  Google Scholar 

  • Dickhut R.M., Canuel E.A., Gustafson K.E., Liu K., Arzayus K.M., Walker S.E., Edgecombe G., Gaylor M.O. and Macdonald E.H., 2000. Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ. Sci. Technol., 34, 4635–4640.

    Article  Google Scholar 

  • Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism. Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Ely J.C., Neal C.R., Kulpa C.F., Schneegurt M.A., Seidler J.A. and Jain J.C., 2001. Implications of platinum-group element accumulation along U.S. roads from catalytic-converter attrition, Environ. Sci. Technol., 35, 3816–3822.

    Article  Google Scholar 

  • Gautam P., Blaha U. and Appel E., 2005. Magnetic susceptibility of dust-loaded leaves as a proxy for traffic-related heavy metal pollution in Kathmandu city. Nepal. Atmos. Environ., 39, 2201–2211.

    Article  Google Scholar 

  • Gocht T., Schwarz K. and Grathwohl P., 2011. Transport of polycyclic aromatic hydrocarbons in highly vulnerable karst systems. Environ. Pollut., 159, 133–139.

    Article  Google Scholar 

  • Goddu S.R., Appel E., Jordanova D. and Wehland R., 2004. Magnetic properties of road dust from Visakhapatnam (India)-relationship to industrial pollution and road traffic. Phys. Chem. Earth, 29, 985–995.

    Article  Google Scholar 

  • Gunawardena J., Egodawatta P., Ayoko G.A. and Goonetilleke A., 2012. Role of traffic in atmospheric accumulation of heavy metals and polycyclic aromatic hydrocarbons. Atmos. Environ., 54, 502–510.

    Article  Google Scholar 

  • Halsall C.J., Maher B.A., Karloukovski V.V., Shah P. and Watkins S.J., 2008. A novel approach to investigating indoor/outdoor pollution links: Combined magnetic and PAH measurements. Atmos. Environ., 42, 8902–8909.

    Article  Google Scholar 

  • Heller F., Strzyszcz Z. and Magiera T., 1998. Magnetic record of industrial pollution on forest soils of Upper Silesia (Poland). J. Geophys. Res., 103, 17767–17774.

    Article  Google Scholar 

  • Hoffmann V., Knab M. and Appel E., 1999. Magnetic susceptibility mapping of roadside pollution. J. Geochem. Explor., 66, 313–326.

    Article  Google Scholar 

  • Hong H.S., Yin H.L., Wang X.H. and Ye C.X., 2007. Seasonal variation of PM10-bound PAHs in the atmosphere of Xiamen, China. Atmos. Res., 85, 429–441.

    Article  Google Scholar 

  • Huhn G., Schulz H., Staerk H.J., Toelle R. and Scheuermann G., 1995. Evaluation of regional heavy metal deposition by multivariate analysis of element contents in pine tree barks. Water Air Soil Pollut., 84, 367–383.

    Article  Google Scholar 

  • Jordanova D., Jordanova N. and Petrov P., 2014. Magnetic susceptibility of road deposited sediments at a national scale-relation to population size and urban pollution. Environ. Pollut., 189, 239–251.

    Article  Google Scholar 

  • Kavouras I.G., Koutrakis P., Tsapakis E., Lagoudaki E., Stephanou E.G., von Baer D. and Oyola P., 2001. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ. Sci. Technol., 35, 2288–2294.

    Article  Google Scholar 

  • Kim W., Doh S.J., Park Y.H. and Yun S.T., 2007. Two year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea. Atmos. Environ., 41, 7627–7641.

    Article  Google Scholar 

  • Larsen R.K. III and Baker J.E., 2003. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ. Sci. Technol., 37, 1873–1881.

    Article  Google Scholar 

  • Maher B.A., Moore C. and Matzka J., 2008. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos. Environ., 33, 2967–2977.

    Google Scholar 

  • Mitchell R. and Maher B.A., 2009. Evaluation and application of biomagnetic monitoring of trafficderived particulate pollution. Atmos. Environ., 43, 2095–2103.

    Article  Google Scholar 

  • Muxworthy A.R., Matzka J., Davila A.F. and Petersen N., 2003. Magnetic signature of daily sampled urban atmospheric particles. Atmos. Environ., 37, 4163–4169.

    Article  Google Scholar 

  • Palmgren F., Waahlin P., Kildesó J., Afshari A. and Fogh C.L., 2003. Characterisation of particle emissions from the driving car fleet and the contribution to ambient and indoor particle concentrations. Phys. Chem. Earth, 28, 327–334.

    Article  Google Scholar 

  • Petrovský E. and Ellwood B.B., 1999. Magnetic monitoring of pollution of air, land and waters. In: Maher B.A. and Thompson R. (Eds), Quaternary Climates, Environments and Magnetism. Cambridge University Press, Cambridge, U.K., 279–322.

    Chapter  Google Scholar 

  • Rai P.K., 2013. Environmental magnetic studies of particulates with special reference to biomagnetic monitoring using roadside plant leaves. Atmos. Environ., 72, 113–129.

    Article  Google Scholar 

  • Riddle S.G., Robert M.A., Jakober C.A., Hannigan M.P. and Kleeman M.J., 2007. Size distribution of trace organic species emitted from light-duty gasoline vehicles. Environ. Sci. Technol., 41, 7464–7471.

    Article  Google Scholar 

  • Sagnotti L., Macrī P., Egli R. and Mondino M., 2006. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. J. Geophys. Res., 111, B12S22, DOI: 10.1029/ 2006JB004508.

    Google Scholar 

  • Sagnotti L., Taddeucci J., Winkler A. and Cavallo A., 2009. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matterin Rome, Italy. Geochem. Geophys. Geosyst., 10, Q08Z06, DOI: 10.1029/2009GC002563.

  • Schauer J.J., Lough G.C., Shafer M.M., Christensen W.C., Arndt M.F., DeMinter J.T. and Park J.-S., 2006. Characterization of Emissions of Metals Emitted from Motor Vehicles. Research Report 133. Health Effects Institute, Boston, MA (http://pubs.healtheffects.org/getfile.php-u=251).

    Google Scholar 

  • Shilton V.F., Booth C.A., Smith J.P., Giess P., Mitchell D.J. and Williams C.D., 2005. Magnetic properties of urban street dust and their relationship with organic matter content in the West Midlands, UK. Atmos. Environ., 39, 3651–3659.

    Article  Google Scholar 

  • Simcik M.F., Eisenreich S.J. and Lioy P.J., 1999. Source apportionment and source/sink relationship of polycyclic aromatic hydrocarbons in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ., 33, 5071–5079.

    Article  Google Scholar 

  • Strzyszcz Z., Magiera T. and Heller F., 1996. The influence of industrial immisions on the magnetic susceptibility of soils in Upper Silesia. Stud. Geophys. Geod., 40, 276–286.

    Article  Google Scholar 

  • Tsapakis M. and Stephanou E.G., 2002. Collection of gas and particle semi-volatile organic compounds: use of an oxidant denuder to minimize polycyclic aromatic hydrocarbons degradation during high-volume air sampling. Atmos. Environ., 37, 4935–4944.

    Article  Google Scholar 

  • Wolz J., Brack W., Moehlenkamp C., Claus E., Braunbeck T. and Hollert H., 2010. Effect-directed analysis of Ah receptor-mediated activities caused by PAHs in suspended particulate matter sampled in flood events. Science and Total Environment, 408, 3327–3333.

    Article  Google Scholar 

  • Yang, T., Liu, Q.S., Li, H.X., Zeng, Q.L., Chan, L.S. (2010). Anthropogenic magnetic particles and heavy metals in the road dust magnetic identification and its implications. Atmos. Environ., 44, 1175–1185.

    Article  Google Scholar 

  • Zhang C.X., Qiao Q.Q., Appel E. and Huang B.C., 2012. Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J. Geochem. Explor., 119-120, 60–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinda Ojha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, G., Appel, E., Wawer, M. et al. Monitoring-based discrimination of pathways of traffic-derived pollutants. Stud Geophys Geod 59, 594–613 (2015). https://doi.org/10.1007/s11200-015-0522-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-0522-9

Keywords

Navigation