Skip to main content
Log in

A tale of two beams: an elementary overview of Gaussian beams and Bessel beams

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

An overview of two types of beam solutions is presented, Gaussian beams and Bessel beams. Gaussian beams are examples of non-localized or diffracting beam solutions, and Bessel beams are example of localized, non-diffracting beam solutions. Gaussian beams stay bounded over a certain propagation range after which they diverge. Bessel beams are among a class of solutions to the wave equation that are ideally diffraction-free and do not diverge when they propagate. They can be described by plane waves with normal vectors along a cone with a fixed angle from the beam propagation direction. X-waves are an example of pulsed beams that propagate in an undistorted fashion. For realizable localized beam solutions, Bessel beams must ultimately be windowed by an aperture, and for a Gaussian tapered window function this results in Bessel-Gauss beams. Bessel-Gauss beams can also be realized by a combination of Gaussian beams propagating along a cone with a fixed opening angle. Depending on the beam parameters, Bessel-Gauss beams can be used to describe a range of beams solutions with Gaussian beams and Bessel beams as end-members. Both Gaussian beams, as well as limited diffraction beams, can be used as building blocks for the modeling and synthesis of other types of wave fields. In seismology and geophysics, limited diffraction beams have the potential of providing improved controllability of the beam solutions and a large depth of focus in the subsurface for seismic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K. and Richards P., 1980. Quantitative Seismology. W.H. Freeman, San Francisco, CA.

    Google Scholar 

  • Alkhalifah T., 1995. Gaussian beam depth migration for anisotropic media. Geophysics, 60, 1474–1484.

    Google Scholar 

  • Babich V.M. and Popov M.M., 1989. Gaussian beam summation (review). Izvestiya Vysshikh Uchebnykh Zavedenii Radiofizika, 32, 1447–1466 (in Russian, translated in Radiophysics and Quantum Electronics, 32, 1063–1081, 1990).

    Google Scholar 

  • Bateman H., 1915. Electrical and Optical Wave Motion. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Bouchal Z., 2003. Nondiffracting optical beams: physical properties, experiments, and applications. Czech J. Phys., 53, 537–578.

    Article  Google Scholar 

  • Brillouin L., 1960. Wave Propagation and Group Velocity. Academic Press, New York.

    Google Scholar 

  • Brittingham J.N., 1983. Focus wave modes in homogeneous Maxwell’s equations: transverse electric mode. J. Appl. Phys., 54, 1179–1189.

    Article  Google Scholar 

  • Burckhardt C.B., Hoffmann H. and Grandchamp P.-A., 1973. Ultrasound axicon: a device for focusing over a large depth. J. Acoust. Soc. Am., 54, 1628–1630.

    Article  Google Scholar 

  • Červený V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Červený V., Klimeš and Pšenčík I., 2007. Seismic ray method: recent developments. Adv. Geophys, 48, 1–128.

    Article  Google Scholar 

  • Červený V., Popov M.M. and Pšenčík I., 1982. Computation of wavefields in inhomogeneous media — Gaussian beam approach. Geophys. J. R. Astr. Soc., 70, 109–128.

    Article  Google Scholar 

  • Chavez-Cerda S., 1999. A new approach to Bessel beams. J. Mod. Opt., 46, 923–930.

    Google Scholar 

  • Chew W.C., 1990. Waves and Fields in Inhomogeneous Media. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Courant R. and Hilbert D., 1966. Methods of Mathematical Physics, Vol. 2. Wiley, New York.

    Google Scholar 

  • Deschamps G.A., 1971. Gaussian beams as a bundle of complex rays. Electron. Lett., 7, 684–685.

    Article  Google Scholar 

  • de Hoop M.V., Smith H., Uhlmann G. and van der Hilst R.D., 2009. Seismic imaging with the generalized Radon transform: a curvelet transform perspective. Inverse Probl., 25, 025005, DOI: 10.1088/0266-5611/25/2/025005.

    Article  Google Scholar 

  • Douma H. and de Hoop M.V., 2007. Leading-order seismic imaging using curvelets. Geophysics, 72, S231–S248.

    Google Scholar 

  • Durnin J., 1987. Exact solutions for nondiffracting beams: I. the scalar theory. J. Opt. Soc. Am. A, 4, 651–654.

    Article  Google Scholar 

  • Durnin J., Miceli J.J. and Eberly J.H., 1987. Diffraction-free beams. Phys. Rev. Lett., 58, 1499–1501.

    Article  Google Scholar 

  • Felsen L.B., 1976. Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams. Symp. Matemat., 18. Instituto Nazionale di Alta Matematica, Academic Press, London, 40–56.

    Google Scholar 

  • Feng S. and Winful H.G., 2001. Physical origin of the Gouy shift. Opt. Lett., 26, 485–487.

    Article  Google Scholar 

  • Flammer C., 1957. Speroidal Wave Functions. Stanford Press, Stanford, CA.

    Google Scholar 

  • Gori F., Guattari G. and Padovani C., 1987. Bessel-Gauss beams. Optics Commun., 64, 491–495.

    Article  Google Scholar 

  • Gray S.H., 2005. Gaussian beam migration of common-shot records. Geophysics, 70, S71–S77.

    Google Scholar 

  • Gray S.H. and Bleistein N., 2009. True-amplitude Gaussian-beam migration. Geophysics, 74, S11–S23.

    Google Scholar 

  • Hill N.R., 1990. Gaussian beam migration. Geophysics, 55, 1416–1428.

    Google Scholar 

  • Hill N.R., 2001. Prestack Gaussian beam depth migration. Geophysics, 66, 1240–1250.

    Google Scholar 

  • ISGILW-Sanya2011, 2011. International Symposium on Geophysical Imaging with Localized waves. http://es.ucsc.edu/~acti/sanya/.

  • Keller J.B. and Streifer W. 1971. Complex rays with applications to Gaussian beams. J. Opt. Soc. Am., 61, 41–43.

    Article  Google Scholar 

  • Kravtsov Yu.A. and Berczynski P., 2007. Gaussian beams in inhomogeneous media: a review. Stud. Geophys. Geod., 51, 1–36.

    Article  Google Scholar 

  • Lu J.Y., 1997. 2D and 3D high frame rate imaging with limited diffraction beams. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44, 839–856.

    Article  Google Scholar 

  • Lu J.Y., 2008. Ultrasonic imaging with limited-diffraction beams. In: Hernandez-Figueroa H.E., Zamboni-Rached M. and Recami E. (Eds.), Localized Waves. Wiley Interscience, New York, 97–128.

    Chapter  Google Scholar 

  • Lu J.Y. and Greenleaf J.F., 1992a. Nondiffracting X-waves: exact solution to free-space scalar wave equation and their finite aperture realizations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39, 19–31.

    Article  Google Scholar 

  • Lu J.Y. and Greenleaf J.F., 1992b. Experimental verification of nondiffracting X-waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39, 441–446.

    Article  Google Scholar 

  • Lu J.Y. and Greenleaf J.F., 1994. Biomedical ultrasound beam forming. Ultrasound Med. Biol., 20, 403–428.

    Article  Google Scholar 

  • Lu J.Y. and Greenleaf J.F., 1995. Comparison of sidelobes of limited diffraction beams and localized waves. In: Jones J.P. (Ed.), Acoustic Imaging, Vol. 21. Plenum Press, New York, 145–152.

    Chapter  Google Scholar 

  • Lu J.Y. and Liu A., 2000. An X wave transform. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47, 1472–1481.

    Article  Google Scholar 

  • Lunardi J.T., 2001. Remarks on Bessel beams, signals and superluminality. Phys. Lett. A, 291, 66–72.

    Article  Google Scholar 

  • McDonald K.T., 2000. Bessel beams. www.hep.princeton.edu/mcdonald/examples/.

  • McDonald K.T., 2002. Gaussian laser beams via oblate spheroidal waves. www.hep.princeton.edu/mcdonald/examples/.

  • McGloin D. and Dholakia K., 2005. Bessel beams: diffraction in a new light. Contemp. Phys., 46, 15–28.

    Article  Google Scholar 

  • Mcleod J.H., 1954. The axicon: a new type of optical element. J. Opt. Soc. Am., 44, 592–597.

    Article  Google Scholar 

  • Mcleod J.H., 1960. Axicons and their uses. J. Opt. Soc. Am., 50, 166–169.

    Article  Google Scholar 

  • Milonni P.W., 2005. Fast Light, Slow Light and Left-Handed Light. Institute of Physics Publ. Bristol, U.K.

    Google Scholar 

  • Mugnai D., Ranfagni A. and Ruggeri R., 2000. Observation of superluminal behaviors in wave propagation. Phys. Rev. Lett., 84, 4830–4833.

    Article  Google Scholar 

  • Nowack R.L., 2003. Calculation of synthetic seismograms with Gaussian beams. Pure Appl. Geophys., 160, 487–507.

    Article  Google Scholar 

  • Nowack R.L., 2008. Focused Gaussian beams for seismic imaging. SEG Expanded Abstracts, 27, 2376–2380.

    Article  Google Scholar 

  • Nowack R.L., 2011. Dynamically focused Gaussian beams for seismic imaging. Int. J. Geophys., 316581, DOI: 10.1155/2011/316581.

  • Nowack R.L. and Kainkaryam S.M., 2011. The Gouy phase anomaly for harmonic and time-domain paraxial Gaussian beams. Geophys. J. Int., 184, 965–973.

    Article  Google Scholar 

  • Nowack R.L., Sen M.K. and Stoffa P.L., 2003. Gaussian beam migration of sparse common-shot data. SEG Expanded Abstracts, 22, 1114–1117.

    Article  Google Scholar 

  • Palma C., 2001. Decentered Gaussian beams, ray bundles and Bessel-Gauss beams. Appl. Optics, 36, 1116–1120.

    Article  Google Scholar 

  • Popov M.M., 1982. A new method of computation of wave fields using Gaussian beams. Wave Motion, 4, 85–97.

    Article  Google Scholar 

  • Popov M.M., 2002. Ray Theory and Gaussian Beam Method for Geophysicists. Lecture Notes, University of Bahia, Salvador, Brazil.

    Google Scholar 

  • Popov M.M., Semtchenok N.M., Popov P.M. and Verdel A.R., 2010. Depth migration by the Gaussian beam summation method. Geophysics, 75, S81–S93.

    Google Scholar 

  • Protasov M.I. and Cheverda V.A., 2006. True-amplitude seismic imaging. Dokl. Earth Sci., 407, 441–445.

    Article  Google Scholar 

  • Protasov M.I. and Tcheverda V.A., 2011. True amplitude imaging by inverse generalized Radon transform based on Gaussian beam decomposition of the acoustic Green’s function, Geophys.l Prospect., 59, 197–209.

    Article  Google Scholar 

  • Recami E., 1998. On localized “X-shaped” superluminal solutions to Maxwell equations. Physica A, 252, 586–610.

    Article  Google Scholar 

  • Recami E. and Zamboni-Rached M., 2009. Localized waves: a review. Adv. Imag. Electron Phys., 156, 235–353.

    Article  Google Scholar 

  • Recami E. and Zamboni-Rached M., 2011. Non-diffracting waves, and “frozen waves”: an introduction. International Symposium on Geophysical Imaging with Localized Waves, Sanya, China, July 24–28 2011, http://es.ucsc.edu/~acti/sanya/SanyaRecamiTalk.pdf.

  • Recami E., Zamboni-Rached M. and Hernandez-Figuerao H.E., 2008. Localized waves: a historical and scientific introduction. In: Hernandez-Figueroa H.E., Zamboni-Rached M. and Recami E. (Eds.), Localized Waves. Wiley Interscience, New York, 1–41.

    Chapter  Google Scholar 

  • Saari P. and Reivelt K., 1997. Evidence of X-shaped propagation-invariant localized light waves. Phys. Rev. Lett., 79, 4135–4138.

    Article  Google Scholar 

  • Salo J. and Friberg A.T., 2008. Propagation-invariant fields: rotationally periodic and anisotropic nondiffracting waves. In: Hernandez-Figueroa H.E., Zamboni-Rached M. and Recami E. (Eds.), Localized Waves. Wiley Interscience, New York, 129–157.

    Chapter  Google Scholar 

  • Sauter T. and Paschke F., 2001. Can Bessel beams carry superluminal signals? Phys. Lett. A, 285, 1–6.

    Article  Google Scholar 

  • Sheppard C.J.R., 1978. Electromagnetic field in the focal region of wide-angular annular lens and mirror systems. 2, 163–166

    Google Scholar 

  • Sheppard C.J.R. and Wilson T., 1978. Gaussian-beam theory of lenses with annular aperture. Microwaves, Optics and Acoustics, 2(4), 105–112.

    Article  Google Scholar 

  • Siegman A.E., 1986. Lasers. University Science Books, Sausalito, CA.

    Google Scholar 

  • Stratton J.A., 1941. Electromagnetic Theory. McGraw-Hill, New York.

    Google Scholar 

  • Stratton J.A., 1956. Spheroidal Wave Functions. Wiley, New York.

    Google Scholar 

  • Turunen J. and Friberg A., 2010. Propagation-invariant optical fields. Progress in Optics, 54, 1–88.

    Article  Google Scholar 

  • Vertergaard Hau L., Harris S.E., Dutton Z. and Behroozi C.H., 1999. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 397, 594–598.

    Article  Google Scholar 

  • Walker S.C. and Kuperman W.A., 2007. Cherenkov-Vavilov formulation of X waves. Phys. Rev. Lett., 99, 244802.

    Article  Google Scholar 

  • Wang L.J., Kuzmich A. and Dogariu A., 2000. Gain-assisted superluminal light propagation. Nature, 406, 277–279.

    Article  Google Scholar 

  • Weber H.J. and Arfken G.B., 2004. Essential Mathematical Methods for Physicists. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Wu R.S., 1985. Gaussian beams, complex rays, and the analytic extension of the Green’s function in smoothly inhomogeneous media. Geophys. J. R. Astr. Soc., 83, 93–110.

    Article  Google Scholar 

  • Wu T.T., 1985. Electromagnetic missiles. J. Appl. Phys., 57, 2370–2373.

    Article  Google Scholar 

  • Žáček, K., 2006. Decomposition of the wavefield into optimized Gaussian packets. Stud. Geophys. Geod., 50, 367–380.

    Article  Google Scholar 

  • Zamboni-Rached M. and Recami E., 2008. Subluminal wave bullets: Exact localized subluminal solutions to the wave equation. Phys. Rev. A, 77, 033824.

    Article  Google Scholar 

  • Zamboni-Rached M., Recami E. and Besieris I.M., 2010. Cherenkov radiation versus X-shaped localized waves. J. Opt. Soc. Am. A, 27, 928–934.

    Article  Google Scholar 

  • Zamboni-Rached M., Recami E. and Hernandez-Figueroa H.E., 2002. New Localized superluminal solutions to the wave equations with finite total energies and arbitrary frequencies. Eur. Phys. J. D, 21, 217–228.

    Article  Google Scholar 

  • Zamboni-Rached M., Recami E. and Hernandez-Figueroa H.E., 2004. Theory of frozen waves: modelling the shape of stationary wave fields. J. Opt. Soc. Am. A, 22, 2465–2475.

    Article  Google Scholar 

  • Zamboni-Rached M., Recami E. and Hernandez-Figuerao H.E., 2008. Structure of nondiffracting waves and some interesting applications. In: Hernandez-Figueroa H.E., Zamboni-Rached M. and Recami E. (Eds.), Localized Waves. Wiley Interscience, New York, 43–77.

    Chapter  Google Scholar 

  • Zheng Y., Geng Y. and Wu R.S., 2011. Numerical investigation of propagation of localized waves in complex media. International Symposium on Geophysical Imaging with Localized Waves, Sanya, China, July 24–28, 2011, http://es.ucsc.edu/~yzheng/sanya/.

  • Ziolkowski R.W., 1985. Exact solutions of the wave equation with complex source locations. J. Math. Phys., 26, 861–863.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Nowack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowack, R.L. A tale of two beams: an elementary overview of Gaussian beams and Bessel beams. Stud Geophys Geod 56, 355–372 (2012). https://doi.org/10.1007/s11200-011-9054-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-9054-0

Keywords

Navigation