Skip to main content
Log in

On hydromagnetic instabilities and the mean electromotive force in a non-uniformly stratified Earth’s core affected by viscosity

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Linear magnetoconvection in a model of a non-uniformly stratified horizontal rotating fluid layer with a toroidal magnetic field is investigated for no-slip and finitely electrically conductive boundaries and with very thin stably stratified upper sublayer. The basic parabolic temperature profile is determined by the temperature difference between the boundaries and by the homogeneous heat source distribution in the layer. This results in a density pattern, in which a stably stratified upper sublayer is present. The developed diffusive perturbations (modes) are strongly affected by the complicated coupling of viscous, thermal and magnetic diffusive processes. The calculations were performed for various values of Roberts number (q ≪ 1 and q = O(1)). The mean electromotive force produced by the developed hydromagnetic instabilities is investigated to find the modes, which can be appropriate for creating the α-effect. It was found that the azimuthal part of the EMF is dominant for westward modes when the Elsasser number Λ ≲ O(1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bod’a J., 1988. Thermal and magnetically driven instabilities in a non-constantly stratified fluid layer. Geophys. Astrophys. Fluid Dyn., 44, 77–90.

    Article  Google Scholar 

  • Braginsky S., 1964. Magnetohydrodynamics of the Earth’s Core. Geomagn. Aeron., 4, 898–916 (Engl. Transl. 698-712).

    Google Scholar 

  • Brestenský J. and Rädler K.-H., 1989. Mean electromotive forces resulting from instabilities in a stratified rapidly rotating fluid layer permeated by a magnetic field. Geophys. Astrophys. Fluid Dynamics, 49, 57–70.

    Article  Google Scholar 

  • Brestenský J. and Ševčík S., 1994. Mean electromotive force due to magnetoconvection in rotating horizontal layer with rigid boundaries. Geophys. Astrophys. Fluid Dyn., 77, 191–208.

    Article  Google Scholar 

  • Brestenský J., Ševčík S. and Šimkanin J., 1995. The boundary conditions influence on a magnetoconvection of a rapidly rotating horizontal fluid layer stratified either uniformly or non-uniformly (mathematical approaches). In: I. Tunyi et al. (Eds.), Proceedings of the 1st Conference of Slovak Geophysicists, Geophysical Institute of SAS, Bratislava, 80–85.

    Google Scholar 

  • Brestenský J., Ševčík S. and Šimkanin J., 1998. Magnetoconvection in dependence on Roberts number. Stud. Geophys. Geod., 42, 280–288.

    Article  Google Scholar 

  • Brestenský J., Ševčík S. and Šimkanin J., 2001. Rotating magnetoconvection in dependence on stratification, diffusive processes and boundary conditions. In: P. Chossat, D. Armbruster and I. Oprea (Eds.), Dynamo and Dynamics, a Mathematical Challenge, NATO Science Series, Sub-Series II, Vol. 26, Kluwer Academic Publishers, 133–144.

  • Chandrasekhar S., 1961. Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford.

    Google Scholar 

  • Fearn D.R. and Loper D.E., 1981. Compositional convection and stratification of the Earth’s core. Nature, 289, 393–394.

    Article  Google Scholar 

  • Glatzmaier G.A. and Roberts P.H., 1995. A three-dimensional self-consistent computer simulation of geomagnetic field reversal. Nature, 337, 203–209.

    Article  Google Scholar 

  • Guba P., 2001. On the finite-amplitude steady convection in rotating mushy layers. J. Fluid Mech., 437, 337–365.

    Article  Google Scholar 

  • Gubbins D., Thomson C.J. and Whaler K.A., 1982. Stable region in the Earth’s liquid core. Geophys. J. R. astr. Soc., 68, 241–251.

    Article  Google Scholar 

  • Hejda P. and Reshetnyak M., 2003. Control volume method for the dynamo problem in the sphere with free rotating inner core. Stud. Geophys. Geod., 47, 147–159.

    Article  Google Scholar 

  • Jones C.A., 2000. Convection-driven geodynamo models. Phil. Trans. R. Soc. Lond. A, 358, 873–897.

    Article  Google Scholar 

  • Kono M. and Roberts P.H., 2002. Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys., 40, art. no. 1013.

    Article  Google Scholar 

  • Krause F., Rädler K.-H., 1980. Mean-Field Magnetohydrodynamics and Dynamo Theory. Akademie-Verlag, Pergamon Press, Berlin, Oxford.

    Google Scholar 

  • Loper D.E., 2000. A model of the dynamical structure of Earth’s outer core. Phys. Earth Planet. Inter., 117, 179–196.

    Article  Google Scholar 

  • Rädler K.-H., Kleeorin N. and Rogachevskii I., 2003. The mean electromotive force for MHD turbulence: The case of a weak magnetic field and slow rotation. Geophys. Astrophys. Fluid Dyn., 97, 249–274.

    Article  Google Scholar 

  • Roberts P.H. and Glatzmaier G.A., 2000. Geodynamo theory and simulations. Rev. Mod. Phys., 72, 1081–1123.

    Article  Google Scholar 

  • Soward A.M., 1979. Thermal and magnetically driven convection in a rapidly rotating fluid layer. J. Fluid Mech., 90, 669–684.

    Article  Google Scholar 

  • Ševčík, S., 1989. Thermal and magnetically driven instabilities in a non-constantly stratified rapidly rotating fluid layer with azimuthal magnetic field. Geophys. Astrophys. Fluid Dyn., 49, 195–211.

    Article  Google Scholar 

  • Ševčík S., Brestenský J. and Šimkanin J., 2000. MAC waves and related instabilities influenced by viscosity in dependence on boundary conditions. Phys. Earth Planet. Inter., 122, 161–174.

    Article  Google Scholar 

  • Šimkanin J., Brestenský J. and Ševčík S., 1997. Dependence of rotating magnetoconvection in horizontal layer on boundary conditions and stratification. In: J. Brestenský and S. Ševčík (Eds.), Stellar and Planetary Magnetoconvection, Acta Astron. et Geophys. Univ. Comenianae, XIX, 195–220.

  • Šimkanin J., Brestenský J. and Ševčík S., 2003. Problem of the rotating magnetoconvection in variously stratified fluid layer revisited. Stud. Geophys. Geod., 47, 827–845.

    Article  Google Scholar 

  • Tilgner A. and Busse F., 2001. Fluid flows in precessing spherical shells. J. Fluid Mech., 426, 387–396.

    Article  Google Scholar 

  • Velímský J. and Matyska C., 2000. The influence of adiabatic heating/cooling on magnetohydrodynamic systems. Phys. Earth Planet. Inter., 117, 197–207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimkanin, J., Brestenský, J. & Ševčík, S. On hydromagnetic instabilities and the mean electromotive force in a non-uniformly stratified Earth’s core affected by viscosity. Stud Geophys Geod 50, 645–661 (2006). https://doi.org/10.1007/s11200-006-0041-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-006-0041-9

Key words

Navigation