Skip to main content
Log in

An algorithmic historiography of the Ebola research specialty: mapping the science behind Ebola

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The objective of this paper was to identify the intellectual profile of the Ebola research specialty and its behavior from its inception to 2014. This objective was met by chronologically mapping the information flows within the specialty using bibliometric and citation data extracted from 1638 Ebola research documents in conjunction with Histcite to produce an algorithmic historiography representing a view of the Ebola specialty’s intellectual profile and evolution. The present study was guided by the following research questions. What is the bibliometric profile of the Ebola specialty in terms of publication output and the impact of its authors, journals, institutions, countries, and years? What influential Ebola research has been produced since its discovery, and how has the research evolved? The most significant results show the Ebola specialty citation network as a small-world and highly cohesive network. The Ebola specialty citation network was found to be symmetrical in structure and segmented into four distinct cliques representing specific research focuses (i.e., uncovering divergent strains, immune responses and vaccines, Ebola’s pathogenesis, Ebola’s molecular structure and physiology). Key authors and contributing journals were identified. The most substantial contributions to the specialty were from the government and academia. The Ebola specialty had a slow publication output and oscillating citation activity for the first few decades, coinciding with several outbreaks. The greatest production of Ebola research articles occurred after 2000, along with exponential citation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Alvarez, C. P., Lasala, F., Carrillo, J., Muñiz, O., Corbí, A. L., & Delgado, R. (2002). C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. Journal of Virology, 76(13), 6841–6844. doi:10.1128/JVI.76.13.6841-6844.2002.

    Article  Google Scholar 

  • Baize, S., Leroy, E. M., Georges-Courbot, M. C., Capron, M., Lansoud-Soukate, J., Debré, P., et al. (1999). Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nature Medicine, 5(4), 423–426. doi:10.1038/7422.

    Article  Google Scholar 

  • Basler, C. F., Wang, X., Mühlberger, E., Volchkov, V., Paragas, J., Klenk, H. D., et al. (2000). The Ebola virus VP35 protein functions as a type IIFN antagonist. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12289–12294. doi:10.1073/pnas.220398297.

    Article  Google Scholar 

  • Basler, C. F., Mikulasova, A., Martinez-Sobrido, L., Paragas, J., Mühlberger, E., Bray, M., et al. (2003). The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. Journal of Virology, 77(14), 7945–7956. doi:10.1128/JVI.77.14.7945-7956.2003.

    Article  Google Scholar 

  • Bavari, S., Bosio, C. M., Wiegand, E., Ruthel, G., Will, A. B., Geisbert, T. W., et al. (2002). Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses. Journal of Experimental Medicine, 195(5), 593–602. doi:10.1084/jem.20011500.

    Article  Google Scholar 

  • Borio, L., Inglesby, T., Peters, C. J., Schmaljohn, A. L., Hughes, J. M., Jahrling, P. B., et al. (2002). Hemorrhagic fever viruses as biological weapons: Medical and public health management. Journal of the American Medical Association, 287(18), 2391–2405. doi:10.1001/jama.287.18.2391.

    Article  Google Scholar 

  • Bray, M., Davis, K., Geisbert, T., Schmaljohn, C., & Huggins, J. (1998). A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. Journal of Infectious Diseases, 178(3), 651–661. doi:10.1086/515386.

    Article  Google Scholar 

  • Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P., & Cunningham, J. M. (2005). Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science, 308(5728), 1643–1645. doi:10.1126/science.1110656.

    Article  Google Scholar 

  • Chen, C., McCain, K., White, H., & Lin, X. (2002). Mapping scientometrics (1981–2001). Proceedings of the American Society for Information Science and Technology, 39(1), 25–34. doi:10.1002/meet.1450390103.

    Article  Google Scholar 

  • Chubin, D. E. (1976). The conceptualization of scientific specialties. Sociological Quarterly, 4, 448–476.

    Article  Google Scholar 

  • Connolly, B. M., Steele, K. E., Davis, K. J., Geisbert, T. W., Kell, W. M., Jaax, N. K., et al. (1999). Pathogenesis of experimental Ebola virus infection in guinea pigs. Journal of Infectious Diseases, 179(Suppl. 1), S203–S217. doi:10.1086/514305.

    Article  Google Scholar 

  • Crane, D. (1972). Invisible colleges: Diffusion of knowledge in scientific communities. Chicago: University of Chicago Press.

    Google Scholar 

  • De Bellis, N. (2009). Bibliometrics and citation analysis. Lanham, MD: The Scarecrow Press Inc.

    Google Scholar 

  • de Solla Price, D. (1961). Science since Babylon. New Haven: Yale University Press.

    Google Scholar 

  • de Solla Price, D. J. (1963). Little science, big science. New York: Columbia University Press.

    Google Scholar 

  • de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515. doi:10.1126/science.149.3683.510.

    Article  Google Scholar 

  • de Solla Price, D. J. (1969). Measuring the size of science. Proceedings of the Israel Academy of Science, 4, 98–111.

    Google Scholar 

  • de Solla Price, D. J. (1978). Toward a model for scientific indicators. In Y. Elkana, J. Lederberg, R. K. Merton, A. Thackray, & H. Zuckerman (Eds.), Toward a metric of science: The advent of scientific indicators (pp. 69–96). New York: Wiley.

    Google Scholar 

  • Elliott, L. H., Kiley, M. P., & McCormick, J. B. (1985). Descriptive analysis of Ebola virus proteins. Virology, 147(1), 169–176. doi:10.1016/0042-6822(85)90236-3.

    Article  Google Scholar 

  • Feldmann, H., Bugany, H., Mahner, F., Klenk, H. D., Drenckhahn, D., & Schnittler, H. J. (1996). Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. Journal of Virology, 70(4), 2208–2214.

    Google Scholar 

  • Feldmann, H., Jones, S., Klenk, H. D., & Schnittler, H. J. (2003). Ebola virus: From discovery to vaccine. Nature Reviews Immunology, 3(8), 677–685. doi:10.1038/nri1154.

    Article  Google Scholar 

  • Garfield, E. (1979). Citation indexing: its theory and application in science, technology, and humanities. New York: John Wiley & Sons.

    Google Scholar 

  • Garfield, E. (2004). Historiographic mapping of knowledge domains literature. Journal of Information Science, 30(2), 119–145. doi:10.1177/0165551504042802.

    Article  Google Scholar 

  • Garfield, E. (2006). Histcite: A software tool for informetric analysis of citation linkage. Information Wissenschaft und Praxis, 57(8), 391.

    Google Scholar 

  • Garfield, E. (2009). From the science of science to scientometrics: Visualizing the history of science with HistCite software. Journal of Informetrics, 3(3), 173–179. doi:10.1016/j.joi.2009.03.009.

    Article  Google Scholar 

  • Gear, J. S., Cassel, G. A., Gear, A. J., Trappler, B., Clausen, L., Meyers, A. M., et al. (1975). Outbreak of Marburg virus disease in Johannesburg. British Medical Journal, 4(5995), 489–493. doi:10.1136/bmj.4.5995.489.

    Article  Google Scholar 

  • Geisbert, T. W., & Jahrling, P. B. (1995). Differentiation of filoviruses by electron microscopy. Virus Research, 39(2–3), 129–150. doi:10.1016/0168-1702(95)00080-1.

    Article  Google Scholar 

  • Geisbert, T. W., Hensley, L. E., Gibb, T. R., Steele, K. E., Jaax, N. K., & Jahrling, P. B. (2000). Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Laboratory Investigation, 80(2), 171–186. doi:10.1038/labinvest.3780021.

    Article  Google Scholar 

  • Geisbert, T. W., Hensley, L. E., Larsen, T., Young, H. A., Reed, D. S., Geisbert, J. B., et al. (2003). Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. American Journal of Pathology, 163(6), 2347–2370. doi:10.1016/S0002-9440(10)63591-2.

    Article  Google Scholar 

  • Glynn, R. W., Chin, J. Z., Kerin, M. J., & Sweeney, K. J. (2010). Representation of cancer in the medical literature—a bibliometric analysis. PLoS ONE, 5(11), e13902. doi:10.1371/journal.pone.0013902.

    Article  Google Scholar 

  • Harande, Y. I. (2011). Exploring the literature of diabetes in Nigeria: A bibliometrics study. African Journal of Diabetes Medicine, 19, 8–11.

    Google Scholar 

  • Harty, R. N., Brown, M. E., Wang, G., Huibregtse, J., & Hayes, F. P. (2000). A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13871–13876. doi:10.1073/pnas.250277297.

    Article  Google Scholar 

  • Heymann, D. L., Barakamfitiye, D., Szczeniowski, M., Muyembe-Tamfum, J. J., Bele, O., & Rodier, G. (1999). Ebola hemorrhagic fever: Lessons from Kikwit, Democratic Republic of the Congo. Journal of Infectious Diseases, 179(Suppl. 1), S283–S286. doi:10.1086/514287.

    Article  Google Scholar 

  • Jaax, N. K., Davis, K. J., Geisbert, T. J., Vogel, P., Jaax, G. P., Topper, M., et al. (1996). Lethal experimental infection of rhesus monkeys with Ebola-zaire (Mayinga) virus by the oral and conjunctival route of exposure. Archives of Pathology and Laboratory Medicine, 120(2), 140–155.

    Google Scholar 

  • Jahrling, P. B., Geisbert, T. W., Dalgard, D. W., Johnson, E. D., Ksiazek, T. G., Hall, W. C., et al. (1990). Preliminary-report: Isolation of Ebola virus from monkeys imported to USA. Lancet, 335(8688), 502–505. doi:10.1016/0140-6736(90)90737-P.

    Article  Google Scholar 

  • Jasenosky, L. D., Neumann, G., Lukashevich, I., & Kawaoka, Y. (2001). Ebola virus VP40-induced particle formation and association with the lipid bilayer. Journal of Virology, 75(11), 5205–5214. doi:10.1128/JVI.75.11.5205-5214.2001.

    Article  Google Scholar 

  • Johnson, K. M., Webb, P. A., Lange, J. V., & Murphy, F. A. (1977). Isolation and partial characterisation of a new virus causing acute hemorrhagic fever in Zaire. Lancet, 1(8011), 569–571.

    Article  Google Scholar 

  • Johnson, E., Jaax, N., White, J., & Jahrling, P. (1995). Lethal experimental infections of rhesus monkeys by aerosolized Ebola virus. International Journal of Experimental Pathology, 76(4), 227–236.

    Google Scholar 

  • Jones, S. M., Feldmann, H., Ströher, U., Geisbert, J. B., Fernando, L., Grolla, A., et al. (2005). Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature Medicine, 11(7), 786–790. doi:10.1038/nm1258.

    Article  Google Scholar 

  • Khan, A. S., Tshioko, F. K., Heymann, D. L., Le Guenno, B., Nabeth, P., Kerstiëns, B., et al. (1999). The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995. Journal of Infectious Diseases, 179(Suppl. 1), S76–S86. doi:10.1086/514306.

    Article  Google Scholar 

  • Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632. doi:10.1145/324133.324140.

    Article  MathSciNet  MATH  Google Scholar 

  • Ksiazek, T. G., Rollin, P. E., Williams, A. J., Bressler, D. S., Martin, M. L., Swanepoel, R., et al. (1999). Clinical virology of Ebola hemorrhagic fever (EHF): Virus, virus antigen, and IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of the Congo. Journal of Infectious Diseases, 179(Suppl. 1), S177–S187. doi:10.1086/514321.

    Article  Google Scholar 

  • Le Guenno, B., Formenty, P., Wyers, M., Gounon, P., Walker, F., & Boesch, C. (1995). Isolation and partial characterisation of a new strain of Ebola virus. Lancet, 345(8960), 1271–1274. doi:10.1016/S0140-6736(95)90925-7.

    Article  Google Scholar 

  • Lee, J. E., Fusco, M. L., Hessell, A. J., Oswald, W. B., Burton, D. R., & Saphire, E. O. (2008). Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 454(7201), 177–182. doi:10.1038/nature07082.

    Article  Google Scholar 

  • Leroy, E. M., Baize, S., Volchkov, V. E., Fisher-Hoch, S. P., Georges-Courbot, M. C., Lansoud-Soukate, J., et al. (2000). Human asymptomatic Ebola infection and strong inflammatory response. Lancet, 355(9222), 2210–2215. doi:10.1016/S0140-6736(00)02405-3.

    Article  Google Scholar 

  • Leroy, E. M., Rouquet, P., Formenty, P., Souquière, S., Kilbourne, A., Froment, J. M., et al. (2004). Multiple Ebola virus transmission events and rapid decline of Central African wildlife. Science, 303(5656), 387–390. doi:10.1126/science.1092528.

    Article  Google Scholar 

  • Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., et al. (2005). Fruit bats as reservoirs of Ebola virus. Nature, 438(7068), 575–576. doi:10.1038/438575a.

    Article  Google Scholar 

  • MacRoberts, M. H., & MacRoberts, B. R. (1996). Problems of citation analysis. Scientometrics, 36(3), 435–444. doi:10.1007/BF02129604.

    Article  Google Scholar 

  • Malashkevich, V. N., Schneider, B. J., McNally, M. L., Milhollen, M. A., Pang, J. X., & Kim, P. S. (1999). Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-angstrom resolution. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 2662–2667. doi:10.1073/pnas.96.6.2662.

    Article  Google Scholar 

  • Merton, R. K. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63. doi:10.1126/science.159.3810.56.

    Article  Google Scholar 

  • Moed, H. F. (2005). Citation analysis in research evaluation. Dordrecht: Springer.

    Google Scholar 

  • Morris, S. A., & Van der Veer Martens, B. (2008). Mapping research specialties. Annual Review of Information Science and Technology, 42(1), 213–295. doi:10.1002/aris.2008.1440420113.

    Article  Google Scholar 

  • Mühlberger, E., Weik, M., Volchkov, V. E., Klenk, H. D., & Becker, S. (1999). Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. Journal of Virology, 73(3), 2333–2342.

    Google Scholar 

  • Noda, T., Sagara, H., Suzuki, E., Takada, A., Kida, H., & Kawaoka, Y. (2002). Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. Journal of Virology, 76(10), 4855–4865. doi:10.1128/JVI.76.10.4855-4865.2002.

    Article  Google Scholar 

  • Pouris, A., & Pouris, A. (2011). A scientometrics of a pandemic: HIV/AIDS research in South Africa and the world. Scientometrics, 86, 541–552. doi:10.1007/s11192-010-0277-6.

    Article  Google Scholar 

  • Sanchez, A., Kiley, M. P., Holloway, B. P., & Auperin, D. D. (1993). Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Research, 29(3), 215–240. doi:10.1016/0168-1702(93)90063-S.

    Article  Google Scholar 

  • Sanchez, A., Trappier, S. G., Mahy, B. W., Peters, C. J., & Nichol, S. T. (1996). The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3602–3607. doi:10.1073/pnas.93.8.3602.

    Article  Google Scholar 

  • Sanchez, A., Yang, Z. Y., Xu, L., Nabel, G. J., Crews, T., & Peters, C. J. (1998). Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. Journal of Virology, 72(8), 6442–6447.

    Google Scholar 

  • Schloegl, C., & Stock, W. G. (2004). Impact and relevance of LIS journals: A scientometric analysis of international and German-language LIS journals-citation analysis verses reader survey. Journal of the American Society for Information Science and Technology, 55(13), 1155–1168. doi:10.1002/asi.20070.

    Article  Google Scholar 

  • Schornberg, K., Matsuyama, S., Kabsch, K., Delos, S., Bouton, A., & White, J. (2006). Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. Journal of Virology, 80(8), 4174–4178. doi:10.1128/JVI.80.8.4174-4178.2006.

    Article  Google Scholar 

  • Simmons, G., Wool-Lewis, R. J., Baribaud, F., Netter, R. C., & Bates, P. (2002). Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. Journal of Virology, 76(5), 2518–2528. doi:10.1128/jvi.76.5.2518-2528.2002.

    Article  Google Scholar 

  • Smith, D. H., Isaacson, M., Johnson, K. M., Bagshawe, A., Johnson, K. M., Swanapoel, R., et al. (1982). Marburg-virus disease in Kenya. Lancet, 1(8276), 816–820. doi:10.1016/S0140-6736(82)91871-2.

    Article  Google Scholar 

  • Sullivan, N. J., Sanchez, A., Rollin, P. E., Yang, Z. Y., & Nabel, G. J. (2000). Development of a preventive vaccine for Ebola virus infection in primates. Nature, 408(6812), 605–609. doi:10.1038/35046108.

    Article  Google Scholar 

  • Sullivan, N. J., Geisbert, T. W., Geisbert, J. B., Xu, L., Yang, Z. Y., Roederer, M., et al. (2003). Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature, 424(6949), 681–684. doi:10.1038/nature01876.

    Article  Google Scholar 

  • Tabah, A. (1999). Literature dynamics: Studies on growth, diffusion, and epidemics. Annual Review of Information Science and Technology, 34, 249–286.

    Google Scholar 

  • Takada, A., Robison, C., Goto, H., Sanchez, A., Murti, K. G., Whitt, M. A., et al. (1997). A system for functional analysis of Ebola virus glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14764–14769. doi:10.1073/pnas.94.26.14764.

    Article  Google Scholar 

  • Thomson Reuters. (2013). Histcite. http://interest.science.thomsonreuters.com/forms/HistCite/. Accessed 1 Oct 2014.

  • Timmins, J., Scianimanico, S., Schoehn, G., & Weissenhorn, W. (2001). Vesicular release of Ebola virus matrix protein VP40. Virology, 283(1), 1–6. doi:10.1006/viro.2001.0860.

    Article  Google Scholar 

  • United States Centers for Disease Control and Prevention (2014). Outbreaks chronology: Ebola virus disease. http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html. Accessed 15 Oct 2014.

  • Volchkov, V. E., Becker, S., Volchkova, V. A., Ternovoj, V. A., Kotov, A. N., Netesov, S. V., et al. (1995). GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology, 214, 421–430.

    Article  Google Scholar 

  • Volchkov, V. E., Feldmann, H., Volchkova, V. A., & Klenk, H. D. (1998). Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proceedings of the National Academy of Sciences of the United States of America, 95(10), 5762–5767. doi:10.1073/pnas.95.10.5762.

    Article  Google Scholar 

  • Volchkov, V. E., Volchkova, V. A., Muhlberger, E., Kolesnikova, L. V., Weik, M., Dolnik, O., et al. (2001). Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science, 291(5510), 1965–1969. doi:10.1126/science.1057269.

    Article  Google Scholar 

  • Weissenhorn, W., Carfí, A., Lee, K. H., Skehel, J. J., & Wiley, D. C. (1998). Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Molecular Cell, 2(5), 605–616. doi:10.1016/S1097-2765(00)80159-8.

    Article  Google Scholar 

  • Wilson, J. A., Hevey, M., Bakken, R., Guest, S., Bray, M., Schmaljohn, A. L., et al. (2000). Epitopes involved in antibody-mediated protection from Ebola virus. Science, 287(5458), 1664–1666. doi:10.1126/science.287.5458.1664.

    Article  Google Scholar 

  • Yang, Z., Delgado, R., Xu, L., Todd, R. F., Nabel, E. G., Sanchez, A., et al. (1998). Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science, 279(5353), 1034–1037. doi:10.1126/science.279.5353.1034.

    Article  Google Scholar 

  • Yang, Z. Y., Duckers, H. J., Sullivan, N. J., Sanchez, A., Nabel, E. G., & Nabel, G. J. (2000). Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nature Medicine, 6(8), 886–889. doi:10.1038/78645.

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges Dr. Heting Chu at Long Island University for providing an initial review and suggestions. No financial assistance was received for the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas V. Olijnyk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olijnyk, N.V. An algorithmic historiography of the Ebola research specialty: mapping the science behind Ebola. Scientometrics 105, 623–643 (2015). https://doi.org/10.1007/s11192-015-1688-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-015-1688-1

Keywords

Mathematics Subject Classification

JEL Classification

Navigation