Skip to main content
Log in

Current Distribution Over the Hollow-Cathode Surface for a Low-Pressure Glow Discharge

  • PLASMA PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The results of an investigation of a low-pressure hollow-cathode glow discharge are presented for the conditions where the cathode cavity depth is comparable with the cavity diameter. The data on current distribution over the hollow-cathode surface using sectioned electrodes are obtained and the length of the cathode sheath is measured. It is shown that discharge can be sustained in the regimes of suppressed glow discharge and ordinary glow discharge. For the regime of a suppressed glow discharge the main fraction of the total discharge current closes to the cathode section nearest to the anode. For the regime of an ordinary glow discharge, when the cavity depth is equal to cavity diameter, the discharge current is uniformly distributed over the cathode surface. The discharge parameters and the values of the cathode sheath are estimated using the model of hollow-cathode discharge sustainment. The model agrees well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. D. Korolev and N. N. Koval, J. Phys. D: Appl. Phys., 51, No. 32, 323001 (2018).

  2. Y. S. Akishev, V. B. Karal’nik, A. V. Petryakov, et al., Plasma Phys. Rep., 42, No. 1, 14 (2016).

    Article  ADS  Google Scholar 

  3. N. V. Gavrilov and A. S. Kamenetskikh, Rev. Sci. Instrum., 75, 1875 (2004).

    Article  ADS  Google Scholar 

  4. E. Dewald, K. Frank, D. H. H. Hoffman, et.al., IEEE Trans. Plasma Sci., 25, 272 (1997).

  5. K. Bergmann, J. Vieker, and A. Wezyk, J. Appl. Phys., 120, No. 14, 143302 (2016).

  6. V. M. Borisov, A. V. Eltsov, A. S. Ivanov, et al., J. Phys. D: Appl. Phys., 37, 3254 (2004).

    Article  ADS  Google Scholar 

  7. Yu. F. Ivanov, I. V. Lopatin, E. A. Petrikova, et al., Russ. Phys. J., 62, No. 11, 2106 (2019).

    Article  Google Scholar 

  8. I. V. Lopatin, Y. H. Akhmadeev, and N. N. Koval, Rev. Sci. Instrum., 86, 103301 (2015).

  9. N. N. Koval, A. I. Ryabchikov, D. O. Sivin, et al., Surf. Coat. Technol., 340, 152 (2018).

    Article  Google Scholar 

  10. Y. H. Akhmadeev, V. V. Denisov, N. N. Koval, et al., Plasma Phys. Rep., 43, No. 1, 67 (2017).

    Article  ADS  Google Scholar 

  11. V. N. Devyatkov and N. N. Koval, Russ. Phys. J., 60, No. 9, 1569 (2017).

    Google Scholar 

  12. R. P. Lamba, V. Pathania, B. L. Meena, et al., Rev. Sci. Instrum., 86, No. 10, 103508 (2015).

  13. J. Q. Yan, S. K. Shen, Y. A. Wang, et al., Rev. Sci. Instrum., 89, No. 6, 065102 (2018).

  14. Y. D. Korolev and K. Frank, IEEE Trans. Plasma Sci., 27, 1525 (1999).

    Article  ADS  Google Scholar 

  15. J. Zhang and X. Liu, IEEE Trans. Dielectr. Electr. Insul., 24, No. 4, 2050 (2017).

    Article  Google Scholar 

  16. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., 41, No. 8, 2087 (2013).

    Article  ADS  Google Scholar 

  17. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 42, No. 8, 799 (2016).

    Article  ADS  Google Scholar 

  18. N. V. Landl, Yu. D. Korolev, V. G. Geyman, et al., Russ. Phys. J., 60, No. 8, 1269 (2017).

    Article  Google Scholar 

  19. Yu. D. Korolev, N. V. Landl, V. G. Geyman, et al., Russ. Phys. J., 62, No. 7, 1269 (2019).

    Article  Google Scholar 

  20. A. V. Kozyrev, Y. D. Korolev, V. G. Rabotkin, and I. A. Shemyakin, J. Appl. Phys., 74, No. 9, 5366 (1993).

    Article  ADS  Google Scholar 

  21. T. Mehr, H. Arentz, P. Bickel, et al., IEEE Trans. Plasma Sci., 23, 324 (1995).

    Article  ADS  Google Scholar 

  22. V. D. Bochkov, V. M. Dyagilev, V. G. Ushich, et al., IEEE Trans. Plasma Sci., 29, No. 5, 802 (2001).

    Article  ADS  Google Scholar 

  23. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 44, No. 1, 110 (2018).

    Article  ADS  Google Scholar 

  24. N. V. Landl, Yu. D. Korolev, G. A. Argunov, et al., Russ. Phys. J., 63, No. 5, 809 (2020).

    Article  Google Scholar 

  25. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., IEEE Trans. Plasma Sci., 43, No. 8, 2349 (2015).

    Article  ADS  Google Scholar 

  26. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Phys. Plasmas, 25, No. 11, 113510 (2018).

  27. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., AIP Adv., 9, No. 8, 085326 (2019).

  28. Y. D. Korolev, N. V. Landl, O. V. Frants et al., Phys. Plasmas, 27, No. 7, 073510 (2020).

  29. N. V. Landl, Yu. D. Korolev, V. G. Geyman, et al., Russ. Phys. J., 62, No. 11, 2024 (2019).

    Article  Google Scholar 

  30. N. V. Landl, Yu. D. Korolev, V. G. Geyman, et al., Russ. Phys. J., 62, No. 7, 1279 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Landl.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 3–9, July, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, N.V., Korolev, Y.D., Frants, O.B. et al. Current Distribution Over the Hollow-Cathode Surface for a Low-Pressure Glow Discharge. Russ Phys J 64, 1175–1182 (2021). https://doi.org/10.1007/s11182-021-02441-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02441-z

Keywords

Navigation