Skip to main content

Advertisement

Log in

Polymer particles containing Fe-based metalloporphyrin as a highly efficient stimulator of reactive oxygen species formation in vitro and in vivo

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Reactive oxygen species are generated by the redox reaction involving metalloporphyrin and ascorbic acid (AA) and lead to oxidative stress followed by cancer cell death. Polymer particles based on the copolymer of lactic and glycolic acid (PLGA) containing FeIIICl-tetraphenylporphyrin (FeClTPP) were prepared and characterized. These particles in combination with AA exhibit cytotoxic activity against the K562 (human chronic myelogenous leukemia) and MCF7 (human breast adenocarcinoma) cell lines. Results in vitro indicated significant antitumor efficiency on mice inoculated with P388 leukemic cells and treated with FeClTPP/AA. The cytotoxic activity of the combined system is achieved due to the formation of reactive oxygen species. The application of this system to the study of anticancer efficiency in vivo on the model of mice that were hypodermically inoculated with P388 lymphocytic leukemia revealed a significant inhibition of tumor growth. The use of FeClTPP in combination with AA seems to be promising in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Gorrini, I. S. Harris, T. W. Mak, Nature Reviews. Drug Discovery, 2013, 12, 931.

    Article  CAS  Google Scholar 

  2. Z. Zhou, J. Song, L. Nie, X. Chen, Chem. Soc. Rev., 2016, 45, 6597.

    Article  CAS  Google Scholar 

  3. A. Tovmasyan, R. S. Sampaio, M.-K. Boss, J. C. Bueno-Janice, B. H. Bader, M. Thomas, J. S. Reboucas, M. Orr, J. D. Chandler, Y.-Mi Go, D. P. Jones, T. N. Venkatraman, S. Haberle, N. Kyui, Ch. D. Lascola, M. W. Dewhirst, I. Spasojevic, L. Benov, I. Batinic-Haberle, Free Radical Biology and Medicine, 2015, 89, 1231.

    Article  CAS  Google Scholar 

  4. J. Du, J. J. Cullen, G. R. Buettner, Biochimica et Biophysica Acta, 2012, 1826, 443.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Rawal, S. R. Schroeder, B. A. Wagner, C. M. Cushing, J. L. Welsh, A. M. Button, J. Du, Z. A. Sibenaller, G. R. Buettner, J. J. Cullen, Cancer Res., 2013, 73, 5232.

    Article  CAS  Google Scholar 

  6. J. Verrax, J. Stockis, A. Tison, H. S. Taper, P. B. Calderon, Biochem. Pharmac., 2006, 72, 671.

    Article  CAS  Google Scholar 

  7. D. M. Miller, S. D. Aust, Arch. Biochem. Biophys., 1989, 271, 113.

    Article  CAS  Google Scholar 

  8. C. Klingelhoeffer, U. Kämmerer, M. Koospal, B. Mühling, M. Schneider, M. Kapp, A. Kübler, C.-T. Germer, C. Otto, BMC Complementary and Alternative Medicine, 2012, 12, 61.

    Article  CAS  Google Scholar 

  9. G. K. Gerasimova, T. A. Sidorova, T. I. Solntseva, T. I. Suchova, E. V. Khoronheva, A. A. Egorova, Russ. Biotherapeutic J., 2006, 5, 98.

    Google Scholar 

  10. A. I. Medvedev, V. V. Leschenko, Cytology, 2012, 54, 417.

    CAS  Google Scholar 

  11. G. K. Gerasimova, O. S. Zhukova, T. P. Ivanova, N. K. Vlasenkova, Experimental Investigations, 2000, 3.

  12. A. J. Ghio, M. S. Carraway, M. C. Madden, J. Toxicol. Environ. Health, Part B, 2012, 15, 1.

    Article  CAS  Google Scholar 

  13. Q.-G. Ren, Sh.-Y. Chen, X.-T. Zhou, H.-B. Ji, Bioorg. Med. Chem., 2010, 18, 8144.

    Article  CAS  Google Scholar 

  14. A. M. Buytendyk, J. D. Graham, J. Gould, K. H. Bowen, J. Phys. Chem. A, 2015, 119, 8643.

    Article  CAS  Google Scholar 

  15. J. C. Barona-Castaño, Ch. C. Carmona-Vargas, T. J. Brocksom, K. T. de Oliveira, Molecules, 2016, 21, 310.

    Article  Google Scholar 

  16. F. Yan, Ch. Zhang, Y. Zheng, L. Mei, L. Tang, C. Song, H. Sun, L. Huang, Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 170.

    Article  CAS  Google Scholar 

  17. S. Grand, M. Bauer, D. Fischer, Adv. Eng. Mater., 2011, 13, 61.

    Article  Google Scholar 

  18. C. Li, Adv. Drug. Deliv. Rev., 2002, 54, 695.

    Article  CAS  Google Scholar 

  19. C. Pinto Reis, R. J. Neufeld, A. J. Ribeiro, F. Veiga, Nano medicine: Nanotechnology, Biology, and Medicine, 2006, 2, 8.

    Google Scholar 

  20. V. S. Cherepovich, E. V. Volochnik, E. V. Antonenko, E. S. Lotkova, T. V. Romanovskaya, V. V. Grinev, Med. Zh. [Med. J.], 2006, 2, 106 (in Russian).

    Google Scholar 

  21. K. Hafer, K. S. Iwamoto, R. H. Schiestl, Radiat. Res., 2008, 169, 460.

    Article  CAS  Google Scholar 

  22. M. Sarkar, R. Varshney, M. Chopra, T. Sekhri, J. S. Adhikari, B. S. Dwarakanath, Cytometry, Part B (Clinical Cytometry), 2005, 70, 20.

    Google Scholar 

  23. A. C. Mamede, A. S. Pires, A. M. Abrantes, S. D. Tavares, A. C. Gonçalves, J. E. Casalta-Lopes, A. B. Sarmento Ribeiro, J. M. Maia, M. F Botelho, Nutrition and Cancer, 2012, 64, 1049.

    Article  CAS  Google Scholar 

  24. T. A. Sidorova, M. S. Vagida, O. L. Kaliya, G. K. Gerasimova, Klin. Onkogematol. [Clinical Oncohematology], 2014, 7, 282 (in Russian).

    Google Scholar 

  25. G. Singh, T. Kaur, R. Kaur, A. Kaur, Int. J. Pharmacol. Pharm. Sci., 2014, 1, 30.

    CAS  Google Scholar 

  26. M. R. Faustova, E. D. Nikolskaya, O. A. Junina, M. D. Mollaev, N. G. Yabbarov, A. V. Lobanov, M. Ya. Melnikov, E. S. Severin, Russ. Chem. Bull., 2018, 67, 359.

    Article  CAS  Google Scholar 

  27. Z. C. Sun, Y.-B. She, Y. Zhou, X.-F Song, K. Li, Molecules, 2011, 16, 2960.

    Article  CAS  Google Scholar 

  28. M.-S. Liao, S. Scheiner, J. Chem. Phys., 2002, 117, 205.

    Article  CAS  Google Scholar 

  29. J. Rochford, D. Chu, A. Hagfeldt, E. Galoppini, J. Am. Chem. Soc., 2007, 15, 4655.

    Article  Google Scholar 

  30. E. Nikolskaya, M. Sokol, M. Faustova, O. Zhunina, M. Mollaev, N. Yabbarov, O. Tereshchenko, R. Popov, E. Severin, Acta of Bioengineering & Biomechanics, 2018, 20, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Faustova.

Additional information

This work was financially supported by the Russian Foundation for Basic Research (Project No. 17-04-01009\19).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2216–2224, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faustova, M.R., Nikolskaya, E.D., Mollaev, M.D. et al. Polymer particles containing Fe-based metalloporphyrin as a highly efficient stimulator of reactive oxygen species formation in vitro and in vivo. Russ Chem Bull 68, 2216–2224 (2019). https://doi.org/10.1007/s11172-019-2690-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2690-1

Key words

Navigation