Skip to main content
Log in

Structural optimization of adaptaquin, a HIF prolyl hydroxylase inhibitor

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The structural optimization of adaptaquin, viz., 7-(4-chlorophenyl)[(3-hydroxypyridin-2-yl)amino]methylquinolin-8-ol, a HIF (hypoxia inducible factor) prolyl hydroxylase inhibitor, was carried out. This was done by cell-based screening using cell lines stably expressing a reporter construct consisting of the fusion protein of HIF oxygen-dependent domain and firefly luciferase (HIF1 ODD-luc). More than 100 structural analogs of adaptaquin were screened and the structures active in the submicromolar range were selected. The highest activity was found for analogs containing isobutyl, isopropyl, trifluoromethyl, and nitro group or halogen atom in the para-position of the benzene ring, but not a dimethylamino group or more bulky substituents. The lack of dependence on the donor-acceptor properties of substituents attests to predominance of the steric effect. The presence of methyl group in positions 3 and 5 of the pyridine ring provides additional activation. The 2-methyl group present in the hydroxyquinoline scaffold (50 compounds in the set) prevents coordination of the inhibitor in the active site and significantly reduces the activation. According to the real-time PCR results, the newly improved adaptaquin analog induces HIF target genes 15-times more efficiently than the FG-4592 inhibitor developed by Fibrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Franke, M. Gassmann, B. Wielockx, Blood, 2013, 122, 1122.

    Article  CAS  PubMed  Google Scholar 

  2. A. A. Joharapurkar, V. B. Pandya, V. J. Patel, R. C. Desai, M. R. Jain, J. Med. Chem., 2018, 61, 6964.

    Article  CAS  PubMed  Google Scholar 

  3. M. H. Rabinowitz, J. Med. Chem., 2013, 56, 9369.

    Article  CAS  PubMed  Google Scholar 

  4. D. Kular, I. C. Macdougall, Pediatr. Nephrol., 2018, DOI 10.1007/s00467-017-3849-3.

    Google Scholar 

  5. M. Ivan, W. G. Kaelin, Mol. Cell, 2017, 66, 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. V. Cernaro, G. Coppolino, L. Visconti, L. Rivoli, A. Lacquaniti, D. Santoro, A. Buemi, S. Loddo, M. Buemi, Med. Res. Rev., 2018, DOI 10.1002/med.21527.

    Google Scholar 

  7. N. A. Smirnova, D. M. Hushpulian, R. E. Speer, I. N. Gaisina, R. R. Ratan, I. G. Gazaryan, Biochemistry (Moscow), 2012, 77, 1108.

    Article  CAS  Google Scholar 

  8. S. S. Karuppagounder, I. Alim, S. J. Khim, M. W. Bourassa, S. F. Sleiman, R. John, C. C. Thinnes, T.-L. Yeh, M. Demetriades, S. Neitemeier, D. Cruz, I. Gazaryan, D. W. Killilea, L. Morgenstern, G. Xi, R. F. Keep, T. Schallert, R. V. Tappero, J. Zhong, S. Cho, F. R. Maxfield, T. R. Holman, C. Culmsee, G.-H. Fong, Y. Su, G. Ming, H. Song, J. W. Cave, C. J. Schofield, F. Colbourne, G. Coppola, R. R. Ratan, Sci. Transl. Med., 2016, 8, 328ra29.

    Article  CAS  Google Scholar 

  9. N. A. Smirnova, I. Rakhman, N. Moroz, M. Basso, J. Payappilly, S. Kazakov, F. Hernandez-Guzman, I. N. Gaisina, A. P. Kozikowski, R. R. Ratan, I. G. Gazaryan, Chem. Biol., 2010, 17, 380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. I. N. Gaisina, A. Yu. Khristichenko, A. M. Gaisin, N. A. Smirnova, I. G. Gazaryan, A. A. Poloznikov, Russ. Chem. Bull., 2018, 67, 2320.

    Article  CAS  Google Scholar 

  11. A. I. Osipyants, A. A. Poloznikov, N. A. Smirnova, D. M. Hushpulian, A. Y. Khristichenko, T. A. Chubar, A. A. Zakhariants, M. Ahuja, I. N. Gaisina, B. Thomas, A. M. Brown, I. G. Gazaryan, V. I. Tishkov, Biochimie, 2018, 147, 46.

    Article  CAS  PubMed  Google Scholar 

  12. M. Obach, A. Navarro-Sabaté, J. Caro, X. Kong, J. Duran, M. Gómez, J. C. Perales, F. Ventura, J. L. Rosa, R. Bartrons, J. Biol. Chem., 2004, 279, 53562.

    Article  CAS  PubMed  Google Scholar 

  13. H. Zhang, C. Lu, M. Fang, W. Yan, M. Chen, Y. Ji, S. He, T. Liu, T. Chen, J. Xiao, Biochem. Biophys. Res. Commun., 2016, 476, 146.

    Article  CAS  PubMed  Google Scholar 

  14. A. Leiherer, K. Geiger, A. Muendlein, H. Drexel, Mol. Cell. Endocrinol., 2014, 383, 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. X.-G. Cui, Z.-T. Han, S.-H. He, X. Wu, T.-R. Chen, C.-H. Shao, D.-L. Chen, N. Su, Y.-M. Chen, T. Wang, J. Wang, D.-W. Song, W.-J. Yan, X.-H. Yang, T. Liu, H.-F. Wei, J. Xiao, Oncotarget, 2017, 8, 24840.

    PubMed  PubMed Central  Google Scholar 

  16. D. Ciarlillo, C. Celeste, P. Carmeliet, D. Boerboom, C. Theoret, PLoS One, 2017, 12, e0180586.

    Google Scholar 

  17. H. Zhao, Y. Wu, Y. Chen, H. Liu, Int. J. Clin. Oncol., 2015, 20, 1233.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Poloznikov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 0168–0173, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poloznikov, A.A., Khristichenko, A.Y., Smirnova, N.A. et al. Structural optimization of adaptaquin, a HIF prolyl hydroxylase inhibitor. Russ Chem Bull 68, 168–173 (2019). https://doi.org/10.1007/s11172-019-2433-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2433-3

Key words

Navigation