Skip to main content
Log in

Analyzing Students’ Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

In this study, secondary school students’ (N = 617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students’ responses are interpreted as their biology-, chemistry-, and physics-related or general understanding of models and modeling. A subpopulation (N = 115; one class per grade) was subsequently asked which models they had in mind when answering the tasks referring to biology, chemistry, and physics (open-ended questions). The findings show significant differences between students’ biology-, chemistry-, and physics-related understandings of models and modeling. Based on a theoretical framework, the biology-related understanding can be seen as less elaborated than the physics- and chemistry-related understandings. The students’ general understanding of models and modeling is located between the biology- and the physics-related understandings. Answers to the open-ended questions indicate that students primarily think about scale and functional models in the context of biology tasks. In contrast, more abstract models (e.g., analogical models, diagrams) were mentioned in relation to chemistry and physics tasks. In sum, the findings suggest that models may be used in a rather descriptive way in biology classes but in a predictive way in chemistry and physics classes. This may explain discipline-specific understandings of models and modeling. Only small differences were found in students’ understanding of models and modeling between the different grade levels 7/8 and 9/10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd-El-Khalick, F. (2012). Nature of science in science education: toward a coherent framework for synergistic research and development. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (pp. 1041–1060). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Adams, R. (2005). Reliability as a measurement design effect. Studies in Educational Evaluation, 31, 162–172.

    Article  Google Scholar 

  • Akerson, V., White, O., Colak, H., & Pongsanon, K. (2011). Relationships between elementary teachers’ conceptions of scientific modeling and the nature of science. In M. Khine & I. Saleh (Eds.), Models and modeling. Cognitive tools for scientific enquiry (pp. 221–237). Dordrecht: Springer.

    Google Scholar 

  • Al-Balushi, S. (2011). Students’ evaluation of the credibility of scientific models that represent natural entities and phenomena. International Journal of Science and Mathematics Education, 9, 571–601.

    Article  Google Scholar 

  • Barak, M., & Hussein-Farraj, R. (2013). Integrating model-based learning and animations for enhancing students’ understanding of proteins structure and function. Research in Science Education, 43, 619–636.

    Article  Google Scholar 

  • Bell, P., & Linn, M. (2002). Beliefs about science: how does science instruction contribute? In B. Hofer & P. Pintrich (Eds.), Personal epistemology. The psychology of beliefs about knowledge and knowing (pp. 321–346). Mahwah: Erlbaum.

    Google Scholar 

  • Black, M. (1962). Models and metaphors. Ithaca: Cornell University.

    Google Scholar 

  • Bond, T., & Fox, C. (2001). Applying the Rasch model: fundamental measurement in the human sciences. Mahwah: Erlbaum.

    Google Scholar 

  • Charness, G., Gneezy, U., & Kuhn, M. (2012). Experimental methods: between-subject and within-subject design. Journal of Economic Behavior & Organization, 81, 1–8.

    Article  Google Scholar 

  • Chittleborough, G., Treagust, D., Mamiala, T., & Mocerino, M. (2005). Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science and Technological Education, 23, 195–212.

    Article  Google Scholar 

  • Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22, 1041–1053.

    Article  Google Scholar 

  • Coll, R. (2006). The role of models, mental models and analogies in chemistry teaching. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 65–77). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Crawford, B., & Cullin, M. (2005). Dynamic assessments of preservice teachers’ knowledge of models and modelling. In K. Boersma, M. Goedhart, O. de Jong, & H. Eijkelhof (Eds.), Research and the quality of science education (pp. 309–323). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Danusso, L., Testa, I., & Vicentini, M. (2010). Improving prospective teachers’ knowledge about scientific models and modelling: design and evaluation of a teacher education intervention. International Journal of Science Education, 32, 871–905.

    Article  Google Scholar 

  • Döbert, H. (2007). Germany. In W. Hörner, H. Döbert, B. von Kopp, & W. Mitter (Eds.), The education systems of Europe (pp. 299–325). Berlin: Springer.

    Chapter  Google Scholar 

  • Driver, R., John, L., Millar, R., & Scott, P. (1996). Young people’s images of science. Buckingham: Open University.

  • Fitzpatrick, A., & Yen, W. (2001). The effects of test length and sample size on the reliability and equating of tests composed of constructed-response items. Applied Measurement in Education, 14, 31–57.

    Article  Google Scholar 

  • Fritz, C., Morris, P., & Richler, J. (2012). Effect size estimates: current use, calculations, and interpretation. Journal of Experimental Psychology General, 141, 2–18.

    Article  Google Scholar 

  • Giesbrecht, F., & Gumpertz, M. (2004). Planning, construction, and statistical analysis of comparative experiments. Hoboken: Wiley.

    Book  Google Scholar 

  • Gilbert, J. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28, 957–976.

    Article  Google Scholar 

  • Gobert, J., & Pallant, A. (2004). Fostering students’ epistemologies of models via authentic model-based tasks. Journal of Science Education and Technology, 13, 7–22.

    Article  Google Scholar 

  • Gobert, J., O’Dwyer, L., Horwitz, P., Buckley, B., Levy, S., & Wilensky, U. (2011). Examining the relationship between students’ understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33, 653–684.

    Article  Google Scholar 

  • Greeno, J. (2009). A theory bite on contextualizing, framing, and positioning: a companion to Son and Goldstone. Cognition and Instruction, 27, 269–275.

    Article  Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799–822.

    Article  Google Scholar 

  • Grünkorn, J., Upmeier zu Belzen, A., & Krüger, D. (2011). Design and test of open-ended tasks to evaluate a theoretical structure of model competence. In A. Yarden & G. Carvalho (Eds.), Authenticity in biology education. Benefits and challenges (pp. 53–65). Braga: CIEC, Universidade do Minho.

  • Guerra-Ramos, M. (2012). Teachers’ ideas about the nature of science: a critical analysis of research approaches and their contribution to pedagogical practice. Science & Education, 21, 631–655.

    Article  Google Scholar 

  • Halloun, I. (2006). Modeling theory in science education. Dordrecht: Springer.

    Google Scholar 

  • Harré, R. (1970). The principles of scientific thinking. London: Macmillan.

    Google Scholar 

  • Harré, R. (2009). Pavlov’s dogs and Schrödinger’s cat: tales from the living laboratory. Oxford, UK: Oxford University.

  • Harrison, A., & Treagust, D. (2000). A typology of school science models. International Journal of Science Education, 22, 1011–1026.

    Article  Google Scholar 

  • Hartig, J., & Frey, A. (2013). Sind Modelle der Item-Response-Theorie (IRT) das “Mittel der Wahl” für die Modellierung von Kompetenzen? [Benefits and limitations of modeling competencies by means of item response theory (IRT)]. Zeitschrift für Erziehungswissenschaft, 16(S1), 47–51.

  • Haugwitz, M., & Sandmann, A. (2010). Collaborative modelling of the vascular system: designing and evaluating a new learning method for secondary students. Journal of Biological Education, 44, 136–140.

    Article  Google Scholar 

  • Henze, I., van Driel, J., & Verloop, N. (2008). Development of experienced science teachers’ pedagogical content knowledge of models of the solar system and the universe. International Journal of Science Education, 30, 1321–1342.

    Article  Google Scholar 

  • Hicks, L. (1970). Some properties of ipsative, normative, and forced-choice normative measures. Psychological Bulletin, 74, 167–184.

    Article  Google Scholar 

  • Hodson, D. (1992). In search of a meaningful relationship: an exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14, 541–562.

    Article  Google Scholar 

  • Hofer, B. (2006). Domain specificity of personal epistemology: resolved questions, persistent issues, new models. International Journal of Educational Research, 45, 85–95.

    Article  Google Scholar 

  • Hörner, W., Döbert, H., von Kopp, B., & Mitter, W. (Eds.). (2007). The education systems of Europe. Berlin: Springer.

    Google Scholar 

  • Justi, R., & Gilbert, J. (2002). Science teachers’ knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24, 1273–1292.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25, 1369–1386.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. (2005). Investigating teachers’ ideas about models and modelling: some issues of authenticity. In K. Boersma, M. Goedhart, O. de Jong, & H. Eijkelhof (Eds.), Research and the quality of science education (pp. 325–335). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kang, S., Scharmann, L., & Noh, T. (2005). Examining students’ views on the nature of science: results from Korean 6th, 8th, and 10th graders. Science Education, 89, 314–334.

    Article  Google Scholar 

  • Kauertz, A., Fischer, H., Mayer, J., Sumfleth, E., & Walpulski, M. (2010). Standardbezogene Kompetenzmodellierung in den Naturwissenschaften der Sekundarstufe I [Modeling competence according to standards for science education in secondary schools]. Zeitschrift für Didaktik der Naturwissenschaften, 16, 135–153.

  • Khan, S. (2011). What’s missing in model-based teaching. Journal of Science Teacher Education, 22, 535–560.

    Article  Google Scholar 

  • KMK [Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der BRD] (Ed.). (2005a). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss [Biology education standards for the Mittlere Schulabschluss]. München & Neuwied: Wolters Kluwer.

  • KMK (Ed.). (2005b). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss [Chemistry education standards for the Mittlere Schulabschluss]. München & Neuwied: Wolters Kluwer.

  • KMK (Ed.). (2005c). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss [Physics education standards for the Mittlere Schulabschluss]. München & Neuwied: Wolters Kluwer.

  • Krell, M., & Krüger, D. (2010). Diagnose von Modellkompetenz: Deduktive Konstruktion und Selektion von geschlossenen Items [Diagnosis of model competence: Deductive development and selection of closed items]. Erkenntnisweg Biologiedidaktik, 9, 23–37.

  • Krell, M., & Krüger, D. (2011). Forced Choice-Aufgaben zur Evaluation von Modellkompetenz im Biologieunterricht: Empirische Überprüfung konstrukt- und merkmalsbezogener Teilkompetenzen [Using forced choice-tasks to evaluate model competence in biology education: Empirical evaluation of trait- and item feature-related dimensions]. Erkenntnisweg Biologiedidaktik, 10, 53–68.

  • Krell, M. (2012). Using polytomous IRT models to evaluate theoretical levels of understanding models and modeling in biology education. Science Education Review Letters, Theoretical Letters 2012, 1–5. Retrieved from http://edoc.hu-berlin.de/serl/2012-1/PDF/2012_1.pdf

  • Krell, M., Czeskleba, A., & Krüger, D. (2012a). Validierung von Forced Choice-Aufgaben durch Lautes Denken [Validation of forced choice-tasks using thinking aloud protocols]. Erkenntnisweg Biologiedidaktik, 11, 53–70.

  • Krell, M., Upmeier zu Belzen, A., & Krüger, D. (2012b). Students’ understanding of the purpose of models in different biological contexts. International Journal of Biology Education, 2(2), 1–34. Retrieved from http://www.ijobed.com/2_2/Moritz-2012.pdf

  • Krell, M., & Krüger, D. (2013). Wie werden Modelle im Biologieunterricht eingesetzt? Ergebnisse einer Fragebogenstudie [How are models used in biology lessons? Findings of a questionnaire survey]. Erkenntnisweg Biologiedidaktik, 12, 9–26.

  • Krell, M., Upmeier zu Belzen, A., & Krüger, D. (2014a). How year 7 to year 10 students categorise models: moving towards a student-based typology of biological models. In D. Krüger & M. Ekborg (Eds.), Research in biological education (pp. 117–131). Retrieved from http://www.bcp.fuberlin.de/biologie/arbeitsgruppen/didaktik/eridob_2012/eridob_proceeding/8-How-year.pdf?1389177404

  • Krell, M., Upmeier zu Belzen, A., & Krüger, D. (2014b). Students’ levels of understanding models and modelling in biology: Global or aspect-dependent? Research in Science Education, 44, 109–132.

  • Krell, M., Upmeier zu Belzen, A., & Krüger, D. (2014c). Context-specificities in students’ understanding of models and modelling: an issue of critical importance for both assessment and teaching. In C. Constantinou, N. Papadouris, & A. Hadjigeorgiou (Eds.), E-Book proceedings of the ESERA 2013 conference. Science education research for evidence-based teaching and coherence in learning. Part 6. Nature of science: History, philosophy and sociology of science. Nicosia, Cyprus: European Science Education Research Association. Retrieved from http://www.esera.org/media/esera2013/Moritz_Krell_07Feb2014.pdf

  • Lazarowitz, R., & Naim, R. (2013). Learning the cell structures with three-dimensional models: students’ achievement by methods, type of school and questions’ cognitive level. Journal of Science Education and Technology, 22, 500–508.

    Article  Google Scholar 

  • Leach, J., Millar, R., Ryder, J., & Séré, M.-G. (2000). Epistemological understanding in science learning: the consistency of representations across contexts. Learning and Instruction, 10, 497–527.

    Article  Google Scholar 

  • Lederman, N. (2007). Nature of science: past, present, and future. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah: Erlbaum.

    Google Scholar 

  • Liang, L., Chen, S., Chen, X., Kaya, O., Adams, A., Macklin, M., & Ebenezer, J. (2009). Preservice teachers’ views about nature of scientific knowledge development: an international collaborative study. International Journal of Science and Mathematics Education, 7, 987–1012.

    Article  Google Scholar 

  • Louca, L., & Zacharia, Z. (2012). Modeling-based learning in science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64, 471–492.

    Article  Google Scholar 

  • Mahr, B. (2008). Ein Modell des Modellseins [A model of being-model]. In U. Dirks & E. Knobloch (Eds.), Modelle (pp. 187–218). Frankfurt am Main: Peter Lang.

  • Mahr, B. (2009). Information science and the logic of models. Software and Systems Modeling, 8, 365–383.

    Article  Google Scholar 

  • Martinez, M. (1991). A comparison of multiple-choice and constructed figural response items. Journal of Educational Measurement, 28, 131–145.

    Article  Google Scholar 

  • Martinez, M. (1999). Cognition and the question of test item format. Educational Psychologist, 34, 207–218.

    Article  Google Scholar 

  • Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.

    Article  Google Scholar 

  • Masters, G. (2010). The partial credit model. In M. Nering & R. Ostini (Eds.), Handbook of polytomous item response theory models (pp. 109–122). New York: Routledge.

    Google Scholar 

  • Maydeu-Olivares, A., & Böckenholt, U. (2005). Structural equation modeling of paired-comparison and ranking data. Psychological Methods, 10, 285–304.

    Article  Google Scholar 

  • McCloy, R., Heggestad, E., & Reeve, C. (2005). A silk purse from the sow’s ear: retrieving normative information from multidimensional forced-choice items. Organizational Research Methods, 8, 222–248.

    Article  Google Scholar 

  • McComas, W. (2002). The principal elements of the nature of science: dispelling the myths. In W. McComas (Ed.), The nature of science in science education. Rationales and strategies (pp. 53–70). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Muis, K., Bendixen, L., & Haerle, F. (2006). Domain-generality and domain-specificity in personal epistemology research: philosophical and empirical reflections in the development of a theoretical framework. Educational Psychology Review, 18, 3–54.

    Article  Google Scholar 

  • Nehm, R. H., & Ha, M. (2011). Item feature effects in evolution assessment. Journal of Research in Science Teaching, 48, 237–256.

    Article  Google Scholar 

  • Nehring, A., Nowak, K., Upmeier zu Belzen, A., & Tiemann, R. (2012). Doing inquiry in chemistry and biology: the context’s influence on the students’ cognitive load. La Chimica nella Scuola, XXXIV, 253–258.

  • NGSS Lead States (Ed.). (2013). Next generation science standards: for states, by states. Washington: The National Academies Press.

  • NRC [National Research Council]. (2000). Inquiry and the national science education standards. Washington: National Academy Press.

    Google Scholar 

  • Oh, P., & Oh, S. (2011). What teachers of science need to know about models: an overview. International Journal of Science Education, 33, 1109–1130.

    Article  Google Scholar 

  • Op’t Eynde, P., de Corte, E., & Verschaffel, L. (2006). Epistemic dimensions of students’ mathematics-related belief systems. International Journal of Educational Research, 45, 57–70.

    Article  Google Scholar 

  • Patzke, C., & Upmeier zu Belzen, A. (2012). Entwicklung von Modellkompetenz und entsprechende Lerngelegenheiten im Biologieunterricht [Development of model competence in biology education and corresponding learning opportunities]. In D. Elster, A. Schultz-Siatkowski, & F. Wischmann (Eds.), 14. Frühjahrsschule 2012. Fachsektion Didaktik der Biologie im Verband für Biologie, Biowissenschaften und Biomedizin (pp. 104–105). Aachen: Shaker Verlag.

  • Penfield, R. (2004). The impact of model misfit on partial credit model parameter estimates. Journal of Applied Measurement, 5, 115–128.

    Google Scholar 

  • Penner, D., Giles, N., Lehrer, R., & Schauble, L. (1997). Building functional models: designing an elbow. Journal of Research in Science Teaching, 34, 125–143.

    Article  Google Scholar 

  • Pfeiffer, V., Koelbach, E., Sumfleth, E., Sandmann, A. (2013). Biologieaufgaben in Chemie und Chemieaufgaben in Biologie [Biology tasks in chemistry and chemistry tasks in biology]. Manuscript in preparation.

  • Reinisch, B., Krell, M., Nordmeier, V., Upmeier zu Belzen, A., & Krüger, D. (2013). Modellkompetenz im Biologie- und Physikunterricht: Entwicklung eines Facettendesigns zur empirischen Überprüfung schwierigkeitserzeugender Aufgabenmerkmale [Abstract] [Model competence in biology and physics education: Development of a facetted test design to evaluate difficulty-generating item characteristics]. In M. Jurgowiak, J. Zabel, A. Dittmer, A. Möller, & P. Schmiemann (Eds.), 15. Internationale Frühjahrsschule der Fachsektion Didaktik der Biologie im Verband Biologie, Biowissenschaften und Biomedizin in Deutschland (pp. 50–51). Leipzig: Universität Leipzig. Retrieved from http://www.qucosa.de/fileadmin/data/qucosa/documents/10590/Abstractband%20FJS%20Publikation.pdf

  • Schanze, S., & Nentwig, P. (2008). Standards im naturwissenschaftlichen Unterricht: ein internationaler Vergleich [Standards in science education: an international comparison]. Zeitschrift für Didaktik der Naturwissenschaften, 14, 125–143.

  • Schwarz, C. (2002, October). Is there a connection? The role of meta-modeling knowledge in learning with models. Paper presented at the fifth International Conference of the Learning Sciences, Seattle, WA. Retrieved from http://schwarz.wiki.educ.msu.edu/file/view/Schwarz_ICLS_metapaper.pdf

  • Schwarz, C., & White, B. (2005). Metamodeling knowledge: developing students’ understanding of scientific modeling. Cognition and Instruction, 23, 165–205.

    Article  Google Scholar 

  • Schwarz, C., Reiser, B., Davis, E., Kenyon, L., Acher, A., & Fortus, D. (2009). Developing a learning progression for scientific modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46, 632–654.

    Article  Google Scholar 

  • Schwarz, C., Reiser, B., Acher, A., Kenyon, L., & Fortus, D. (2012). MoDeLS: challenges in defining a learning progression for scientific modeling. In A. Alonzo & A. Gotwals (Eds.), Learning progressions in science. Current challenges and future directions (pp. 101–137). Rotterdam: Sense.

    Google Scholar 

  • Senatsverwaltung. [Berlin Senate Administration for Education, Youth, and Sport] (Ed.). (2006). Rahmenlehrplan für die Sekundarstufe I: Jahrgangsstufe 7–10. Berlin: Oktoberdruck.

  • Sins, P., Savelsbergh, E., Van Joolingen, W., & Van Hout‐Wolters, B. (2009). The relation between students’ epistemological understanding of computer models and their cognitive processing on a modelling task. International Journal of Science Education, 31, 1205–1229.

    Article  Google Scholar 

  • Smith, R. (2000). Fit analysis in latent trait measurement models. Journal of Applied Measurement, 1, 199–218.

    Google Scholar 

  • Son, J., & Goldstone, R. (2009). Contextualization in perspective. Cognition and Instruction, 27, 51–89.

    Article  Google Scholar 

  • Stachowiak, H. (1973). Allgemeine Modelltheorie [General model theory]. Wien: Springer.

  • Svoboda, J., & Passmore, C. (2013). The strategies of modeling in biology education. Science & Education, 22, 119–142.

    Article  Google Scholar 

  • Tepner, O., Borowski, A., Dollny, S., Fischer, H., Jüttner, M., & Kirschner, S. (2012). Modell zur Entwicklung von Testitems zur Erfassung des Professionswissens von Lehrkräften in den Naturwissenschaften [Item development model for assessing professional knowledge of science teachers]. Zeitschrift für Didaktik der Naturwissenschaften, 18, 7–28.

  • Terzer, E. (2013). Modellkompetenz im Kontext Biologieunterricht [Model competence in biology education] (Dissertation). Humboldt Universität zu Berlin. Retrieved from http://edoc.hu-berlin.de/dissertationen/terzer-eva-2012-12-19/PDF/terzer.pdf

  • Topcu, M. (2013). Preservice teachers’ epistemological beliefs in physics, chemistry, and biology: a mixed study. International Journal of Science and Mathematics Education, 11, 433–458.

    Article  Google Scholar 

  • Treagust, D., Chittleborough, G., & Mamiala, T. (2002). Student’s understanding of the role of scientific models in learning science. International Journal of Science Education, 24, 357–368.

    Article  Google Scholar 

  • Treagust, D., Chittleborough, G., & Mamiala, T. (2004). Students’ understanding of the descriptive and predictive nature of teaching models in organic chemistry. Research in Science Education, 34, 1–20.

    Article  Google Scholar 

  • Upmeier zu Belzen, A., & Krüger, D. (2010). Modellkompetenz im Biologieunterricht [Model competence in biology teaching]. Zeitschrift für Didaktik der Naturwissenschaften, 16, 41–57.

  • Van Driel, J., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21, 1141–1153.

    Article  Google Scholar 

  • Van Driel, J., & Verloop, N. (2002). Experienced teachers’ knowledge of teaching and learning of models and modeling in science education. International Journal of Science Education, 24, 1255–1277.

    Article  Google Scholar 

  • Wang, W.-C., Chen, P.-H., & Cheng, Y.-Y. (2004). Improving measurement precision of test batteries using multidimensional item response models. Psychological Methods, 9, 116–136.

    Article  Google Scholar 

  • White, B., Collins, A., & Frederiksen, J. (2011). The nature of scientific meta-knowledge. In M. Khine & I. Saleh (Eds.), Models and modeling. Cognitive tools for scientific enquiry (pp. 41–76). Dordrecht: Springer.

  • Wright, B., & Masters, G. (1982). Rating scale analysis. Chicago: Mesa.

  • Wu, M. L. (2005). The role of plausible values in large-scale surveys. Studies in Educational Evaluation, 31, 114–128.

    Article  Google Scholar 

  • Wu, M. L., Adams, R., Wilson, M., & Haldane, S. (2007). ACER ConQuest. Camberwell: ACER.

  • Yacoubian, H., & BouJaoude, S. (2010). The effect of reflective discussions following inquiry-based laboratory activities on students’ views of nature of science. Journal of Research in Science Teaching, 47, 1229–1252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Krell.

Appendix

Appendix

General ranking-tasks for the aspects nature of models (top left), multiple models (top right), testing models (bottom left), and changing models (bottom right) used in this study (for the aspect purpose of models see Fig. 1). The discipline-specific ranking-tasks were constructed by adding the disciplines biology, chemistry, and physics as illustrated in Fig. 1 and described in the article. Note that the questionnaires were originally written and administered in the German language.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krell, M., Reinisch, B. & Krüger, D. Analyzing Students’ Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics. Res Sci Educ 45, 367–393 (2015). https://doi.org/10.1007/s11165-014-9427-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-014-9427-9

Keywords

Navigation