Skip to main content
Log in

Catalytic activity of rare earth and alkali metal promoted (Ce, La, Mg, K) Ni/Al2O3 nanocatalysts in reverse water gas shift reaction

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanocrystalline Ni/Al2O3 catalysts and promoted Ni-M/Al2O3 (M = Ce, La, Mg, K) catalysts were employed a in reverse water gas shift reaction. Among the prepared nickel catalysts 5% Ni/Al2O3 catalyst showed high CO2 conversion and CO selectivity. To improve the CO2 conversion and CO selectivity of 5% Ni/Al2O3, 1 or 2 wt% Ce, La, Mg or K were used. One percent La and 2% K showed highest CO2 conversion and CO selectivity. The high activity and CO selectivity of promoted catalysts can be accredited to the increase of Ni dispersion (or smaller Ni particles), concentration of surface active sites and CO2 adsorption by basic nature of promoters. The prepared samples were characterized by X-ray diffraction, inductively coupled plasma emission spectroscopy, N2 adsorption–desorption (BET), temperature programmed reduction (TPR), scanning electron microscopy and transmission electron microscopy (TEM) techniques. The BET surface area of prepared γ-alumina support was 126.81 m2 g−1, impregnation of the support with Ni and promotion of 5 wt% Ni with K and La reduced the specific surface area. The support and catalysts possessed mesoporous structure. The TPR-H2 analysis revealed higher Ni dispersion and reducibility for promoted nickel catalysts; 5Ni–2K showed highest reducibility. TEM images of 5Ni and 5Ni–2K showed increase of Ni dispersion and decrease of Ni particle size for the promoted catalyst. After 50 h on stream at 600 °C, 5Ni–1La and 5Ni–2K performed great catalytic stability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Liang, H. Duan, X. Su, X. Chen, Y. Huang, X. Chen, T. Zhang, Catal. Today 281, 319 (2017)

    Article  CAS  Google Scholar 

  2. S.S. Kim, H.H. Lee, S.C. Hong, Appl. Catal. A Gen. 423, 100 (2012)

    Google Scholar 

  3. M.D. Porosoff, J.G. Chen, J. Catal. 301, 30 (2013)

    Article  CAS  Google Scholar 

  4. S.S. Kim, H.H. Lee, S.C. Hong, Appl. Catal. B Environ. 119, 100 (2012)

    Google Scholar 

  5. D.J. Pettigrew, D.L. Trimm, N.W. Cant, Catal. Lett. 28, 313 (1994)

    Article  CAS  Google Scholar 

  6. I. Ro, R. Carrasquillo-Flores, J.A. Dumesic, G.W. Huber, Appl. Catal. A Gen. 521, 182 (2016)

    Article  CAS  Google Scholar 

  7. W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev. 40, 3703 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. A.G. Kharaji, A. Shariati, M.A. Takassi, Chin. J. Chem. Eng. 21, 1007 (2013)

    Article  CAS  Google Scholar 

  9. L. Wang, H. Liu, Y. Chen, S. Yang, Int. J. Hydrogen Energy 42, 3682 (2017)

    Article  CAS  Google Scholar 

  10. F.S. Stone, D. Waller, Top. Catal. 22, 305 (2003)

    Article  CAS  Google Scholar 

  11. C.S. Chen, W.H. Cheng, S.S. Lin, Appl. Catal. A Gen. 257, 97 (2004)

    Article  CAS  Google Scholar 

  12. C.S. Chen, W.H. Cheng, S.S. Lin, Appl. Catal. A Gen. 238, 55 (2003)

    Article  CAS  Google Scholar 

  13. M. Lortie, Reverse water gas shift reaction over supported Cu–Ni nanoparticle catalysts. Doctoral dissertation, Université d’Ottawa/University of Ottawa, Ottawa, Canada (2014)

  14. Y. Liu, Z. Li, H. Xu, Y. Han, Catal. Commun. 76, 1 (2016)

    Article  CAS  Google Scholar 

  15. H.C. Wu, Y.C. Chang, J.H. Wu, J.H. Lin, I.K. Lin, C.S. Chen, Catal. Sci. Technol. 5, 4154 (2015)

    Article  CAS  Google Scholar 

  16. W.A. Luhui, S. Zhang, L.I. Yuan, J. Rare Earth 26, 66 (2008)

    Article  Google Scholar 

  17. B. Lu, K. Kawamoto, J. Environ. Chem. Eng. 1, 300 (2013)

    Article  CAS  Google Scholar 

  18. M.D. Porosoff, S. Kattel, W. Li, P. Liu, J.G. Chen, Chem. Commun. 51, 6988 (2015)

    Article  CAS  Google Scholar 

  19. W.A. Luhui, L. Hui, L. Yuan, C.H. Ying, Y.A. Shuqing, J. Rare Earth 31, 559 (2013)

    Article  CAS  Google Scholar 

  20. C.S. Chen, J.H. Lin, J.H. You, K.H. Yang, J. Phys. Chem. A 114, 3773 (2009)

    Article  CAS  Google Scholar 

  21. F.M. Sun, C.F. Yan, C.Q. Guo, S.L. Huang, Int. J. Hydrogen Energy 40, 15985 (2015)

    Article  CAS  Google Scholar 

  22. A. Irankhah, F. Heidari, Y. Davoodbeygi, Res. Chem. Intermed. 43, 7119 (2017)

    Article  CAS  Google Scholar 

  23. M.L. Ang, U. Oemar, Y. Kathiraser, E.T. Saw, C.H.K. Lew, Y. Du, S. Kawi, J. Catal. 329, 130 (2015)

    Article  CAS  Google Scholar 

  24. C.S. Chen, J.H. You, C.C. Lin, J. Phys. Chem. C 115, 1464 (2011)

    Article  CAS  Google Scholar 

  25. Z. Alipour, M. Rezaei, F. Meshkani, J. Ind. Eng. Chem. 20, 2858 (2014)

    Article  CAS  Google Scholar 

  26. N.D. Charisiou, G. Siakavelas, K.N. Papageridis, A. Baklavaridis, L. Tzounis, D.G. Avraam, M.A. Goula, J. Nat. Gas Sci. Eng. 31, 164 (2016)

    Article  CAS  Google Scholar 

  27. F. Meshkani, S.F. Golesorkh, M. Rezaei, M. Andache, Res. Chem. Intermed. 43, 545 (2017)

    Article  CAS  Google Scholar 

  28. M.A. Goula, N.D. Charisiou, G. Siakavelas, L. Tzounis, I. Tsiaoussis, P. Panagiotopoulou, G. Goula, I.V. Yentekakis, Int. J. Hydrogen Energy 42, 13724 (2017)

    Article  CAS  Google Scholar 

  29. Y.H. Park, J.Y. Kim, D.J. Moon, N.C. Park, Y.C. Kim, Res. Chem. Intermed. 41, 9603 (2015)

    Article  CAS  Google Scholar 

  30. J. Mazumder, H.I. de Lasa, Catal. Today 237, 100 (2014)

    Article  CAS  Google Scholar 

  31. M. Bettman, R.E. Chase, K. Otto, W.H. Weber, J. Catal. 117, 447 (1989)

    Article  CAS  Google Scholar 

  32. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Pure Appl. Chem. 87, 1051 (2015)

    Article  CAS  Google Scholar 

  33. L. Zhang, X. Wang, C. Chen, X. Zou, X. Shang, W. Ding, X. Lu, RSC Adv. 7, 33143 (2017)

    Article  CAS  Google Scholar 

  34. J. Li, Y. Ren, B. Yue, H. He, Chin. J. Catal. 38, 1166 (2017)

    Article  CAS  Google Scholar 

  35. T. Osaki, T. Mori, J. Catal. 204, 89 (2001)

    Article  CAS  Google Scholar 

  36. K.Y. Koo, H.S. Roh, Y.T. Seo, D.J. Seo, W.L. Yoon, S.B. Park, Appl. Catal. A Gen. 340, 183 (2008)

    Article  CAS  Google Scholar 

  37. Y.X. Zeng, L. Wang, C.F. Wu, J.Q. Wang, B.X. Shen, X. Tu, Appl. Catal. B Environ. 224, 469 (2018)

    Article  CAS  Google Scholar 

  38. A. Goguet, F.C. Meunier, D. Tibiletti, J.P. Breen, R. Burch, J. Phys. Chem. B 108, 20240 (2004)

    Article  CAS  Google Scholar 

  39. M. García-Diéguez, C. Herrera, M.Á. Larrubia, L.J. Alemany, Catal. Today 197, 50 (2012)

    Article  CAS  Google Scholar 

  40. M.H. Amin, S. Putla, S.B.A. Hamid, S.K. Bhargava, Appl. Catal. A Gen. 492, 160 (2015)

    Article  CAS  Google Scholar 

  41. Y. Jiao, Y. Du, J. Zhang, C. Li, Y. Xue, J. Lu, Y. Chen, J. Anal. Appl. Pyrolysis 116, 58 (2015)

    Article  CAS  Google Scholar 

  42. S. Choi, B.I. Sang, J. Hong, K.J. Yoon, J.W. Son, J.H. Lee, B.K. Kim, Sci. Rep. 7, 41207 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. K.Y. Koo, H.S. Roh, U.H. Jung, W.L. Yoon, Catal. Today 185, 126 (2012)

    Article  CAS  Google Scholar 

  44. A. Goguet, F. Meunier, J. Breen, R. Burch, M.I. Petch, A.F. Ghenciu, J. Catal. 226, 382 (2004)

    Article  CAS  Google Scholar 

  45. R. Yang, C. Xing, C. Lv, L. Shi, N. Tsubaki, Appl. Catal. A Gen. 385, 92 (2010)

    Article  CAS  Google Scholar 

  46. B. Atul, B. Tidona, Ph. Rudolf von Rohr, A. Urakawa, Catal. Sci. Technol. 3, 767 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Irankhah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, A., Irankhah, A. & Aghamiri, S.F. Catalytic activity of rare earth and alkali metal promoted (Ce, La, Mg, K) Ni/Al2O3 nanocatalysts in reverse water gas shift reaction. Res Chem Intermed 45, 5125–5141 (2019). https://doi.org/10.1007/s11164-019-03905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03905-1

Keywords

Navigation