Skip to main content
Log in

Chemical modification of activated carbon surface with iron functional groups for efficient separation of vanadium: batch and column study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, iron functional groups-impregnated activated carbon (IIAC) composite was prepared as a novel adsorbent for vanadium separation. Adsorption experiments were performed in batch and column systems, and the effects of various operating parameters, such as solution pH, initial concentration, contact time, and temperature, were evaluated. The kinetic data confirmed the validity of the pseudo-second-order kinetic model for vanadium adsorption on IIAC. The sorption equilibrium data were analyzed using Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models. The results showed that IIAC has a vanadium ions adsorption capacity of 313 mg g−1. The activation and thermodynamic parameters were determined using kinetics and equilibrium data. The experimental data of the column adsorption process were fitted by Thomas and BDST models. The results showed that Thomas model can well describe the breakthrough curves. The column experiments showed that IIAC composite has good adsorption performance for vanadium ions adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Wyers, Brit. J. Ind. Med. 3, 177–182 (1946)

    CAS  Google Scholar 

  2. B. Patel, G.E. Henderson, S.J. Haswell, R. Grzeskowiak, The Analyst 115, 1063–1066 (1990)

    Article  CAS  Google Scholar 

  3. A.P. Rodríguez, J.A.H. Viezcas, J.R.P. Videa, G.L.G. Torresdey, O.P. Pérez, F.R.R. Velázquez, Microchem. J. 118, 1–11 (2015)

    Article  Google Scholar 

  4. A. Dabrowski, Z. Hubicki, P. Podkoscielny, E. Robens, Chemosphere 56, 91–106 (2004)

    Article  CAS  Google Scholar 

  5. A. Alibrahim, H. Shlewit, S. Alike, Chem. Eng. J. 52(1), 29–33 (2008)

    Google Scholar 

  6. M. Nabavinia, M. Soleimani, A. Kargari, Int. J. Chem. Environ. Eng. 3, 149–152 (2012)

    CAS  Google Scholar 

  7. R. Navarro, J. Guzman, I. Saucedo, J. Revilla, E. Guibal, Waste Manag. 27, 425–438 (2007)

    Article  CAS  Google Scholar 

  8. N. Mehrabi, M. Soleimani, M.M. Yeganeh, H. Sharififard, RSC Adv. 5, 51470–51482 (2015)

    Article  CAS  Google Scholar 

  9. R. Chand-Bansal, M. Goyal, Activated Carbon Adsorption (Taylor & Francis, Boca Raton, 2005)

    Book  Google Scholar 

  10. H. Marsh, F. Rodriguez-Reinoso, Activated Carbon (Elsevier, New York, 2006)

    Google Scholar 

  11. A.M. Cooper, K.D. Hristovski, T. Möller, P. Westerhoff, P. Sylvester, J. Hazard. Mater. 183, 381–388 (2010)

    Article  CAS  Google Scholar 

  12. J.A. Arcibar-Orozco, J.R. Rangel-Mendez, T.J. Bandosz, J. Hazard. Mater. 246–247, 300–309 (2013)

    Article  Google Scholar 

  13. J.H. Xu, N. Gao, Y. Deng, S. Xia, Chem. Eng. J. 222, 520–526 (2013)

    Article  CAS  Google Scholar 

  14. H. Sharififard, M. Soleimani, RSC Adv. 5, 80650–80660 (2015)

    Article  CAS  Google Scholar 

  15. H. Sharififard, M. Soleimani, Res. Chem. Intermed. 43, 2501–2516 (2017)

    Article  CAS  Google Scholar 

  16. H. Sharififard, F. Zokaee Ashtiani, M. Soleimani, Asia Pac. J. Chem. Eng. 8, 384–395 (2013)

    Article  CAS  Google Scholar 

  17. P. Cambier, Clay Miner. 21, 191–200 (1986)

    Article  CAS  Google Scholar 

  18. Z. Al-Qodah, R. Shawabkah, Braz. J. Chem. Eng. 26, 127–136 (2009)

    Article  CAS  Google Scholar 

  19. Y. Li, C. Zhu, T. Lu, Z. Guo, D. Zhang, J. Ma, S. Zhu, Carbon 52, 565–573 (2013)

    Article  Google Scholar 

  20. T.S. Anirudhan, P.G. Radhakrishnan, Chem. Eng. J. 165, 142–150 (2010)

    Article  CAS  Google Scholar 

  21. T. Wang, Z. Cheng, B. Wang, W. Ma, Chem. Eng. J. 181–182, 182–188 (2012)

    Article  Google Scholar 

  22. B.H. Hameed, A.A. Ahmad, J. Hazard. Mater. 164, 870–875 (2009)

    Article  CAS  Google Scholar 

  23. M.C. Ncibi, J. Hazard. Mater. 153, 207–212 (2008)

    Article  CAS  Google Scholar 

  24. K. Riahi, S. Chaabane, B.B. Thayer, J. Saudi Chem. Soc. 21, 143–152 (2017)

    Article  Google Scholar 

  25. V.J. Inglezakis, A.A. Zorpas, Desalin. Water Treat. 39, 149–157 (2012)

    Article  CAS  Google Scholar 

  26. C. Namasivayam, D. Sangeetha, Adsorption 12, 103–117 (2006)

    Article  CAS  Google Scholar 

  27. J. Guzman, I. Saucedo, R. Navarro, J. Revilla, E. Guibal, Langmuir 18, 1567–1573 (2002)

    Article  CAS  Google Scholar 

  28. M. Jansson-Charrier, E. Guibal, J. Roussy, B. Delanghe, P. Le Cloirec, Water Res. 30, 465–475 (2002)

    Article  Google Scholar 

  29. T.S. Anirudhan, S. Jalajamony, L. Divya, Ind. Eng. Chem. Res. 48, 2118–2124 (2009)

    Article  CAS  Google Scholar 

  30. X.P. Liao, W. Tang, R.Q. Zhou, B. Shi, Adsorption 14, 55–64 (2008)

    Article  CAS  Google Scholar 

  31. T. Leiviskä, A. Keränen, N. Vainionpää, J. Al Amir, O. Hormi, J. Tanskanen, Water Sci. Technol. 72, 437–442 (2015)

    Article  Google Scholar 

  32. A. Naeem, P. Westerhoff, S. Mustafa, Water Res. 41, 1596–1602 (2007)

    Article  CAS  Google Scholar 

  33. M. Govindaraj, S. Pattabhi, Desalin. Water Treat. 54, 2664–2674 (2015)

    Article  Google Scholar 

  34. A. Bhatnagar, A.K. Minocha, D. Pudasainee, H.K. Chung, S.H. Kim, H.S. Kim, G. Lee, B. Min, B.H. Jeon, Chem. Eng. J. 144, 197–204 (2008)

    Article  CAS  Google Scholar 

  35. D.M. Manohar, B.F. Noeline, T.S. Anirudhan, Ind. Eng. Chem. Res. 44, 6676–6684 (2005)

    Article  CAS  Google Scholar 

  36. C. Pennesi, C. Totti, F. Beolchini, PLoS ONE 8(10), e76870 (2013)

    Article  CAS  Google Scholar 

  37. A. Keränen, T. Leiviskä, A. Salakka, J. Tanskanen, Desalin. Water Treat. 53, 2645–2654 (2015)

    Article  Google Scholar 

  38. Y. Shi, J. Yang, W. Mao, Y. Li, X. Xu, H. Zhang, W. Yu, Y. Li, C. Yang, Desalin. Water Treat. 53, 2655–2663 (2015)

    Article  CAS  Google Scholar 

  39. R.G. Kunz, J.F. Giannelli, H.D. Stensel, J. Water Pollut. Control Feder. 48, 762–770 (1976)

    CAS  Google Scholar 

  40. M. Songolzadeh, M. Soleimani, M. Takht Ravanchi, J. Nat. Gas Sci. Eng. 27, 831–841 (2015)

    Article  CAS  Google Scholar 

  41. R. Han, Y. Wang, W. Yu, W. Zou, J. Shi, H. Lui, J. Hazard. Mater. 139, 513–518 (2006)

    Google Scholar 

  42. M. Ghasemi, A.R. Keshtkar, R. Dabbagh, S. Jaber Safdari, J. Hazard. Mater. 189(1–2), 141–149 (2011)

    Article  CAS  Google Scholar 

  43. Z. Xu, J.G. Cai, B.C. Pan, J. Zhejiang Univ. Sci. A 14, 155–176 (2013)

    Article  CAS  Google Scholar 

  44. G.S. Bohart, E.Q. Adams, J. Chem. Soc. 42, 523–529 (1920)

    Article  CAS  Google Scholar 

  45. A.B. Albadarin, C. Mangwandi, A.H. Al-Muhtaseb, G.M. Walker, S.J. Allen, M.N.M. Ahmad, Chin. J. Chem. Eng. 20(3), 469–477 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the Ministry for Foreign Affairs and International Cooperation of Italy for Financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakimeh Sharififard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharififard, H., Pepe, F., Aprea, P. et al. Chemical modification of activated carbon surface with iron functional groups for efficient separation of vanadium: batch and column study. Res Chem Intermed 43, 6553–6570 (2017). https://doi.org/10.1007/s11164-017-3004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3004-6

Keywords

Navigation