Skip to main content

Advertisement

Log in

Insights into the synergy of zero-valent iron and copper oxide in persulfate oxidation of Orange G solutions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The degradation of Orange G (OG) by persulfate (PS, S2O8 2−) activated with dual catalysts that combined zero-valent iron (ZVI) and copper oxide (CuO) was investigated through batch experiments. Effects of pH, initial OG concentration, persulfate dosages, and dosages of dual catalysts on OG degradation were also examined. Higher persulfate concentration and catalysts dosages resulted in higher OG degrading rates. The OG degradation was higher under acidic conditions (pH 3.0 and 5.0) when compared to alkaline conditions. The constituents and the morphology of the catalysts coating before and after reaction were also investigated with X-ray diffraction and scanning electron microscopy. Radical mechanism was studied and three radical scavengers [methanol (MA), tert-butanol (TBA), phenol] were used to determine the type of major active species taking part in the degradation of OG. It was assumed that the \({\text{SO}}_{4}^{ \cdot - }\) or \({\text{HO}} \cdot\) played a major role in the OG degradation. In conclusion, the ZVI/CuO/PS system is a good candidate for use in detoxifying water contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Dong, J. Chen, C. Li, H. Zhu, Dyes Pigm. 73(2), 261–268 (2007)

    Article  CAS  Google Scholar 

  2. Y. Peng, D. Fu, R. Liu, F. Zhang, X. Liang, Chemosphere 71(5), 990–997 (2008)

    Article  CAS  Google Scholar 

  3. A. Azam, A. Hamid, J. Hazard. Mater. 133(1–3), 167–171 (2006)

    Article  CAS  Google Scholar 

  4. K.C. Chen, J.Y. Wu, C.C. Huang, Y.M. Liang, S.C.J. Hwang, J. Biotechnol. 101(3), 241–252 (2003)

    Article  CAS  Google Scholar 

  5. L. Abramian, H. El-Rassy, Chem. Eng. J. 150(2–3), 403–410 (2009)

    Article  CAS  Google Scholar 

  6. X.R. Xu, X.Z. Li, Sep. Purif. Technol. 72(1), 105–111 (2010)

    Article  CAS  Google Scholar 

  7. C.I. Pearee, J.R. Lloyd, J.T. Guthrie, Dyes Pigm. 58(3), 179–196 (2003)

    Article  Google Scholar 

  8. A.L. Teel, C.R. Warberg, D.A. Atkinson, R.J. Watts, Water Res. 35(4), 977–984 (2001)

    Article  CAS  Google Scholar 

  9. M.M. Huber, S. Canonica, G.Y. Park, U.V. Gunten, Environ. Sci. Technol. 37(5), 1016–1024 (2003)

    Article  CAS  Google Scholar 

  10. S.K. Ling, S.B. Wang, Y.L. Peng, J. Hazard. Mater. 178(1–3), 385–389 (2010)

    Article  CAS  Google Scholar 

  11. P. Neta, R.E. Huie, A.B. Ross, J. Phys. Chem. 17, 1027–1082 (1998)

    Google Scholar 

  12. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17(2), 513–886 (1988)

    Article  CAS  Google Scholar 

  13. M.G. Antoniou, A.A. de la Cruz, D.D. Dionysiou, Appl. Catal. B Env. 96(3–4), 290–298 (2010)

    Article  CAS  Google Scholar 

  14. D. Salari, A. Niaei, S. Aber, M.H. Rasoulifard, J. Hazard. Mater. 166(1), 61–66 (2009)

    Article  CAS  Google Scholar 

  15. K.C. Huang, R.A. Couttenye, G.E. Hoag, Chemosphere 49(4), 413–420 (2002)

    Article  CAS  Google Scholar 

  16. C.J. Liang, Y.Y. Guo, Water Air Soil Pollut. 223(7), 4605–4614 (2012)

    Article  CAS  Google Scholar 

  17. S.Y. Yang, X. Yang, X.T. Shao, R. Niu, L.L. Wang, J. Hazard. Mater. 186(1), 659–666 (2011)

    Article  CAS  Google Scholar 

  18. M. Ahmad, A.L. Teel, R.J. Watts, Environ. Sci. Technol. 47(11), 5864–5871 (2013)

    Article  CAS  Google Scholar 

  19. V.N. Kislenko, A.A. Berlin, N.V. Litovehenko, Russ. J. Gen. Chem. 65(2), 1092–1096 (1995)

    Google Scholar 

  20. S. Rodriguez, L. Vasquez, D. Costa, A. Romero, A. Santos, Chemosphere 101, 86–92 (2014)

    Article  CAS  Google Scholar 

  21. R. Ahmadi, M.H. Rasoulifard, M. Vahedpour, Fresenius Environ. Bull. 22(11), 3140–3145 (2013)

    CAS  Google Scholar 

  22. A. Ghauch, A.M. Tuqan, N. Kibbi, S. Geryes, Chem. Eng. J. 213, 259–271 (2012)

    Article  CAS  Google Scholar 

  23. G.G. Anipsitakis, D.D. Dionysiou, Environ. Sci. Technol. 38(13), 3705–3712 (2004)

    Article  CAS  Google Scholar 

  24. S.Y. Oh, H.W. Kim, J.M. Park, C. Yoon, J. Hazard. Mater. 168(1), 346–351 (2009)

    Article  CAS  Google Scholar 

  25. H.Y. Liang, Y.Q. Zhang, S.B. Huang, I. Hussain, Chem. Eng. J. 218, 384–391 (2013)

    Article  CAS  Google Scholar 

  26. C.S. Liu, K. Shih, C.X. Sun, F. Wang, Sci. Total Environ. 416, 507–512 (2012)

    Article  CAS  Google Scholar 

  27. C.L. Hsueh, Y.H. Huang, C.C. Wang, C.Y. Chen, Chemosphere 58(10), 1409–1414 (2005)

    Article  CAS  Google Scholar 

  28. J.H. Sun, X.L. Wang, J.Y. Sun, R.X. Sun, S.P. Sun, L.P. Qiao, J. Mol. Catal. A Chem. 260(1–2), 241–246 (2006)

    Article  CAS  Google Scholar 

  29. S.P. Sun, C.J. Li, J.H. Sun, S.H. Shi, M.H. Fan, Q. Zhou, J. Hazard. Mater. 161(2–3), 1052–1057 (2009)

    Article  CAS  Google Scholar 

  30. C. Liang, C.F. Huang, N. Mohanty, R.M. Kurakalva, Chemosphere 73(9), 1540–1543 (2008)

    Article  CAS  Google Scholar 

  31. APHA, AWWA, WEF, APHA, Washington, DC, (1998)

  32. X.R. Xu, Z.Y. Zhao, X.Y. Li, J.D. Gu, Chemosphere 55(1), 73–79 (2004)

    Article  CAS  Google Scholar 

  33. A. Stefansson, Environ. Sci. Technol. 41(17), 6117–6123 (2007)

    Article  CAS  Google Scholar 

  34. O.S. Furman, A.L. Teel, R.J. Watts, Environ. Sci. Technol. 44(16), 6423–6428 (2010)

    Article  CAS  Google Scholar 

  35. C. Cai, H. Zhang, X. Zhong, L.W. Hou, Water Res. 66, 473–485 (2014)

    Article  CAS  Google Scholar 

  36. H. Hori, A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, Environ. Sci. Technol. 39(7), 2383–2388 (2005)

    Article  CAS  Google Scholar 

  37. W. Chu, T.K. Lau, S.C. Fung, J. Agric. Food Chem. 54(26), 10047–10052 (2006)

    Article  CAS  Google Scholar 

  38. X.Y. Yu, Z.C. Bao, J.R. Barker, J. Phys. Chem. A 108(2), 295–308 (2004)

    Article  CAS  Google Scholar 

  39. C.J. Liang, C.F. Huang, Y.J. Chen, Water Res. 42(15), 4091–4100 (2008)

    Article  CAS  Google Scholar 

  40. R.V. Eldik, G.M. Harris, Inorg. Chem. 19(4), 880–886 (1980)

    Article  Google Scholar 

  41. K.F. Chen, C.M. Kao, L.C. Wu, R.Y. Surampalli, S.H. Liang, Water Environ. Res. 81(7), 687–694 (2009)

    Article  CAS  Google Scholar 

  42. S.H. Liang, C.M. Kao, Y.C. Kuo, K.F. Chen, J. Hazard. Mater. 185(2–3), 1162–1168 (2011)

    Article  CAS  Google Scholar 

  43. C.J. Liang, H.W. Su, Ind. Eng. Chem. Res. 48(11), 5558–5562 (2009)

    Article  CAS  Google Scholar 

  44. C.J. Liang, Z.S. Wang, C.J. Bruell, Chemosphere 66(1), 106–113 (2007)

    Article  CAS  Google Scholar 

  45. M.E. Lindsey, M.A. Tarr, Environ. Sci. Technol. 34(3), 444–449 (2000)

    Article  CAS  Google Scholar 

  46. F. Ji, C. Li, L. Deng, Chem. Eng. J. 178, 239–243 (2011)

    Article  CAS  Google Scholar 

  47. Y.L. Nie, C. Hu, J.H. Qu, X. Zhao, Appl. Catal. B 87(1–2), 30–36 (2009)

    Article  CAS  Google Scholar 

  48. T. Aman, A.A. Kazi, M.U. Sabri, Q. Bano, Colloids Surf. B 63(1), 116–121 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the National Natural Science Foundation of China (No. 51208206), Guangdong Provincial Department of Science (No. 2012A032300015), Guangdong Natural Science Foundation (No. S2011040000389), and the Fundamental Research Funds for the Central Universities (2013ZZ0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinquan Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wan, J., Ma, Y. et al. Insights into the synergy of zero-valent iron and copper oxide in persulfate oxidation of Orange G solutions. Res Chem Intermed 42, 481–497 (2016). https://doi.org/10.1007/s11164-015-2035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2035-0

Keywords

Navigation