Skip to main content
Log in

Acid–base characterization of heterogeneous catalysts: an up-to-date overview

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this overview, we focus on the different and current methods of acid–base characterization of heterogeneous catalysts and on their potential relation with catalytic properties in gas and liquid phases. Special emphasis is drawn on the main techniques currently employed such as the use of Hammett’s indicators, the use of basic or acidic probes of different strength for adsorption measurements in microcalorimetry and of their thermal programmed desorption, the use of other techniques such as FTIR, ESR, NMR, photoluminescence, Raman, UV–Vis, and XPS, to identify and describe acid–base sites, the use of model catalytic reactions, and of theoretical/modeling approaches. Relationships between such a characterization and catalytic properties in different acid or base reactions are discussed, and implemented for different catalysts and different reactions. The concept of thermodynamic acidity/basicity (determined via chemical physical characterization) versus reactivity (determined via catalytic properties) of acid–base sites is presented, and explains why relationships between acid–base properties and catalytic properties are very often met but are difficult to be established unambiguously and cannot be generalized. The case of acid–base properties in liquid phase “polar” (water, alcohol) and “apolar” (cyclohexane) as “effective” and “intrinsic” properties, respectively, and their relation with catalytic properties in liquid phase are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. H. Tanabe, Solid Acid and Bases (Kodansha/Academic Press, Tokyo/Amsterdam, 1970)

  2. B. Imelik, C. Naccache, G. Coudurier, Y. Ben Taarit, J.C. Vedrine, Catalysis by acids and bases. Stud. Surf. Sci. Catal. 20, 1–445 (1985)

    Article  Google Scholar 

  3. G. Busca, B. Onida, D. Tichit, A. Vaccari, Catalysis by acids and bases: new materials and surface studies: 6th world congress on catalysis by acids and bases. Catal. Today 152, 1–118 (2010)

    Article  CAS  Google Scholar 

  4. J.C. Védrine, J.-M.M. Millet, J.C. Volta, Oxidation reactions: acid–base and redox properties and role of water. Catal. Today 32, 115–123 (1996)

    Article  Google Scholar 

  5. J.C. Védrine, The role of redox, acid–base and collective properties and the crystalline state of heterogeneous catalysts in the selective oxidation reactions. Top. Catal. 21, 97–106 (2002)

    Article  Google Scholar 

  6. I. Fechete, Y. Wang, J.C. Védrine, The past, present and future of heterogeneous catalysis. Catal. Today 189, 2–27 (2012)

    Article  CAS  Google Scholar 

  7. K. Tanabe, W. Hölderich, Industrial applications of solid acid–base catalysts. Appl. Catal. A 181, 399–434 (1999)

    Article  CAS  Google Scholar 

  8. G. Busca, Bases and basic materials in industrial and environmental chemistry: a review of commercial processes. Ind. Eng. Chem. Res. 48, 6486–6511 (2009)

    Article  CAS  Google Scholar 

  9. H. Pines, W.O. Haag, Stereoselectivity in the carbanion-catalyzed isomerization of 1-butene. J. Org. Chem. 23, 328–329 (1958)

    Article  CAS  Google Scholar 

  10. Y. Ono, H. Hattori, Solid Base Catalysis, chap. 2.5 (Springer, Heidelberg, 2011), pp. 41–68

  11. A. Gervasini, A. Auroux, Acidity and basicity of metal oxide surfaces. II. Determination by catalytic decomposition of isopropanol. J. Catal. 131, 190–198 (1991)

    Article  CAS  Google Scholar 

  12. A. Ouqour, G. Coudurier, J.C. Védrine, Acid–base properties of metallic oxide catalysts studied by conversion of i-propanol. J. Chem. Soc. Faraday Trans. I 89, 3151–3155 (1993)

    Article  CAS  Google Scholar 

  13. C. Lahousse, J. Bachelier, J.C. Lavalley, H. Lauron-Pernot, A.-M. Le Govic, Validity of using isopropanol decomposition as a test-reaction for the characterization of metal oxides basicity; comparison with results obtained from methylbutynol decomposition. J. Mol. Catal. 87, 329–332 (1994)

    Article  CAS  Google Scholar 

  14. P. Thomasson, O.S. Tyagi, H. Knözinger, Characterization of the basicity of modified MgO-catalysts. Appl. Catal. A 181, 181–188 (1999)

    Article  CAS  Google Scholar 

  15. P. Kustrowski, L. Chmielarz, E. Bozek, M. Sawalha, F. Rössner, Acidity and basicity of hydrotalcite derived mixed Mg–Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2. Mater. Res. Bull. 39, 263–281 (2004)

    Article  CAS  Google Scholar 

  16. M. Guisnet, Characterization of acid catalysts by use of model reactions. Stud. Surf. Sci. Catal. 20, 283–297 (1985)

    Article  CAS  Google Scholar 

  17. M. Guisnet, Model reactions for characterizing the acidity of solid catalysts. Acc. Chem. Res. 23, 392–398 (1990)

    Article  CAS  Google Scholar 

  18. G. Bourdillon, C. Gueguen, M. Guisnet, Characterization of acid catalysts by means of model reactions: I acid strength necessary for the catalysis of various hydrocarbon reactions. Appl. Catal. 61, 123–139 (1990)

    Article  CAS  Google Scholar 

  19. D. Martin, D. Duprez, Evaluation of the acid–base surface properties of several oxides and supported metal catalysts by means of model reactions. J. Mol. Catal. A 118, 113–128 (1997)

    Article  CAS  Google Scholar 

  20. K. Tanabe, Y. Sato, T. Hayasaka, N. Hara, New Solid Acids and Bases (Kodansha/Elsevier, Tokyo/Amsterdam, 1989)

    Google Scholar 

  21. A. Corma, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 95, 559–614 (1995)

    Article  CAS  Google Scholar 

  22. e.g., Derouane, J.C. Védrine, R. Ramos Pinto, P.M. Borges, L. Costa, M.A.N.D.A. Lemos, F. Lemos, F. Ramôaribeiro, The acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity. Catal. Rev. Sci. Eng. 55, 454–515 (2013)

    Article  CAS  Google Scholar 

  23. D. Barthomeuf, G. Coudurier, J.C. Védrine, Basicity and basic catalytic properties of zeolites. Mater. Chem. Phys. 18, 553–575 (1988)

    Article  CAS  Google Scholar 

  24. H. Hattori, Heterogeneous basic catalysis. Chem. Rev. 95, 537–558 (1995)

    Article  CAS  Google Scholar 

  25. D. Barthomeuf, Basic zeolites: characterization and uses in adsorption and catalysis. Catal. Rev. Sci. Eng. 38, 521–612 (1996)

    Article  Google Scholar 

  26. H. Lauron-Pernot, F. Luck, J.M. Popa, Methylbutynol: a new and simple diagnostic tool for acidic and basic sites of solids. App. Catal. 78, 213–225 (1991)

    Article  CAS  Google Scholar 

  27. H. Lauron-Pernot, Evaluation of surface acido-basic properties of inorganic-based solids by model catalytic alcohol reaction networks. Catal. Rev. Sci. Eng. 48, 315–361 (2006)

    Article  CAS  Google Scholar 

  28. Y. Ono, H. Hattori, Solid Base Catalysis (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  29. E. Iglesia, D.G. Barton, J.A. Biscardi, M.J.L. Gines, S.L. Soled, Bifunctional pathways in catalysis by solid acids and bases. Catal. Today 38, 339–360 (1997)

    Article  Google Scholar 

  30. A. Corma, S. Iborra, Optimization of alkaline earth metal oxide and hydroxide catalysts for base-catalyzed reactions. Adv. Catal. 49, 239–302 (2006)

    CAS  Google Scholar 

  31. G. Busca, Bases and basic materials in chemical and environmental processes. Liquid versus solid basicity. Chem. Rev. 110, 2217–2249 (2010)

    Article  CAS  Google Scholar 

  32. J. Weitkamp, M. Hunger, Acid and base catalysis on zeolites, in Introduction in Zeolite Science and Practice, ed. by J. Cejka, H. van Bekkum, A. Corma, F. Schüth, vol 22 (Elsevier, Amsterdam, 2007), pp. 787–835

  33. J.N. Brønsted, Elnige bemerkungen über den begriff der saüren und basen. Rec. Trav. Chim. Pays. Bas, 42, 718–728 (1923)

  34. J.N. Brønsted, Acid and basic catalysis. Chem. Rev. 5, 231–338 (1928)

    Article  Google Scholar 

  35. G.N. Lewis, Valency and structure of atoms and molecules (Wiley, New York, 1923)

    Google Scholar 

  36. M. Brändle, J. Sauer, Brønsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. J. Am. Chem. Soc. 120, 1556–1570 (1998)

    Article  Google Scholar 

  37. J.N. Brønsted, V.K. La Mer, The activity coefficients of ions in very dilute solutions. J. Am. Chem. Soc. 46, 555–573 (1924)

    Article  Google Scholar 

  38. L.P. Hammett, A.J. Deyrup, A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with water. J. Am. Chem. Soc. 54, 2721–2739 (1932)

    Article  CAS  Google Scholar 

  39. R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

  40. G. Klopman, Chemical reactivity and the concept of charge- and frontier-controlled reactions. J. Am. Chem. Soc. 90, 223–234 (1968)

    Article  CAS  Google Scholar 

  41. F.G. Bordwell, Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 21, 456–463 (1988)

    Article  CAS  Google Scholar 

  42. R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7517 (1983)

    Article  CAS  Google Scholar 

  43. D. Barthomeuf in Acidity and Basicity of Solids, ed. by J. Fraissard, L. Petrakis (Kluwer Academic, Dordrecht, 1994), pp 181–197

  44. D. Barthomeuf, Acidity and basicity in zeolites. Stud. Surf. Sci. Catal. 65, 157–169 (1991)

    Article  CAS  Google Scholar 

  45. L. Pauling, The nature of chemical bond, (3d ed.) (Cornell University Press, Ithaca, 1960)

    Google Scholar 

  46. A.L. Allred, Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 5, 215–221 (1961)

    Article  Google Scholar 

  47. N.C. Jeong, J.S. Lee, E.L. Tae, Y.J. Lee, K.B. Yoon, Acidity scale for metal oxides and Sanderson’s electronegativities of lanthanide elements. Angew. Chem. Int. Ed. 47, 10128–10132 (2008)

    Article  CAS  Google Scholar 

  48. A. Zecchina, M.G. Lofthouse, F.S. Stone, Reflectance spectra of surface states in magnesium oxide and calcium oxide. J. Chem. Soc., Faraday Trans. 1(71), 1476–1490 (1975)

    Article  Google Scholar 

  49. A. Zecchina, F. Stone, Reflectance spectra of surface states in strontium oxide and barium oxide. J. Chem. Soc., Faraday Trans. 1(72), 2364–2374 (1976)

    Article  Google Scholar 

  50. S. Collucia, A.J. Tench, Spectroscopic studies of hydrogen adsorption on highly dispersed MgO. Stud. Surf. Sci. Catal. 7, 1154–1169 (1981)

    Article  Google Scholar 

  51. M.-L. Bailly, C. Chizallet, G. Costentin, J.-M. Krafft, H. Lauron-Pernot, M. Che, A spectroscopy and catalysis study of the nature of active sites of MgO catalysts: thermodynamic Brønsted basicity versus reactivity of basic sites. J. Catal. 235, 413–422 (2005)

    Article  CAS  Google Scholar 

  52. C. Chizallet, G. Costentin, M. Che, F. Delbecq, P. Sautet, Revisiting acido-basicity of the MgO surface by periodic density functional theory calculations: role of surface topology and ion coordination on water dissociation. J. Phys. Chem. B 110, 15878–15886 (2006)

    Article  CAS  Google Scholar 

  53. C. Walling, The acid strength of surface. J. Am. Chem. Soc. 72, 1164–1168 (1950)

    Article  CAS  Google Scholar 

  54. H.A. Benesi, Acidity of catalyst surfaces. I Acid strength from colors of adsorbed indicators. J. Chem. Soc. 78, 5490–5494 (1956)

    Article  CAS  Google Scholar 

  55. R.J. Gillepsie, Fluorosulfuric acid and related superacid media. Acc. Chem. Res. 1, 202–209 (1968)

    Article  Google Scholar 

  56. H.A. Benesi, Acidity of catalyst surfaces. II Amine titration using Hammett indicators. J. Phys. Chem. 61, 970–973 (1957)

    Article  CAS  Google Scholar 

  57. R.J. Cvetanovic, Y. Anenomiya, Application of a temperature-programmed desorption technique to catalyst studies. Adv. Catal. 17, 103–149 (1967)

    CAS  Google Scholar 

  58. R.J. Cvetanovic, Y. Anenomiya, A temperature programmed desorption technique for investigation of practical catalysts. Catal. Rev. 6, 21–48 (1972)

    Article  CAS  Google Scholar 

  59. L. Damjanović, A. Auroux, Determination of acid/base properties by temperature programmed desorption (TPD) and adsorption calorimetry, in Zeolite Characterization and Catalysis, ed by A.W. Chester, e.g., Derouane, chap. 3 (Springer, Heidelberg, 2009), pp. 107–167

  60. M. Niwa, N. Katada, New method for the temperature- programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review. Chem. Rec. 13, 432–455 (2013)

    Article  CAS  Google Scholar 

  61. A. Gervasini, A. Auroux, Thermodynamics of adsorbed molecules for a new acid–base topochemistry of alumina. J. Phys. Chem. 97, 2628–2639 (1993)

    Article  CAS  Google Scholar 

  62. J.L. Reed, Electronegativity: proton affinity. J. Phys. Chem. 98, 10477–10483 (1994)

    Article  CAS  Google Scholar 

  63. E.P.L. Hunter, S.G. Lias, Evaluated gas phase basicities and proton affinities of molecules: an update. J. Phys. Chem. Ref. Data 27, 413–656 (1998)

    Article  CAS  Google Scholar 

  64. M. Niwa, K. Suzuki, N. Morishita, G. Sastre, K. Okumura, N. Katada, Dependence of cracking activity on the Brønsted acidity of Y zeolite: DFT study and experimental confirmation. Catal. Sci. Tech. 3, 1919–1927 (2013)

    Article  CAS  Google Scholar 

  65. Y.F. Zhang, Z.Y. Liu, S.Y. Ren, W.N. Wang, B.J. Shen, Study of basic centers and active oxygen species of solid-base catalysts for oxidation of iso-mercaptans. Appl. Catal. A: Gen. 473, 125–131 (2014)

    Article  CAS  Google Scholar 

  66. A.M. Frey, T. van Haasterecht, K.P. de Jong, J.H. Bitter, Calcium oxide supported on monoclinic zirconia as a highly active solid base catalyst. ChemCatChem 5, 3621–3628 (2013)

    Article  CAS  Google Scholar 

  67. A. Auroux, Acidity and basicity: determination by adsorption microcalorimetry, in Molecular Sieves-Science and Technology, vol 6 (Springer, Berlin, 2008), pp. 45–152

  68. A. Auroux, Y.S. Jin, J.C. Védrine, Comparative calorimetric studies of the acidity of zeolites by static and temperature programmed methods of ammonia adsorption and desorption. Appl. Catal. 36, 323–330 (1988)

    Article  CAS  Google Scholar 

  69. A. Mekki-Berrada, A. Auroux, Thermal methods in Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, ed. by M. Che, J.C. Védrine (Wiley, Weinheim, 2012), pp. 747–852

  70. J.C. Védrine, A. Auroux, V. Bolis, P. Dejaifve, C. Naccache, P. Wierzchowski, e.g., Derouane, J.P Gilson, J.C.H. van Hoff, J.P. van den Berg, J. Wolthuisen, Infrared, microcalorimetric and electron spin resonance investigations of the acidic properties of the H-ZSM-5 zeolite. J. Catal. 59, 248–262 (1979)

  71. A. Auroux, V. Bolis, P. Wierzchowski, P.C. Gravelle, J.C. Védrine, Study of the acidity of ZSM-5 by microcalorimetry and infrared spectroscopy. J. Chem. Soc., Faraday Trans. 75, 2544–2555 (1979)

    Article  CAS  Google Scholar 

  72. A. Gervasini, G. Bellussi, J. Fenyvesi, A. Auroux, Microcalorimetric and catalytic studies of the acidic character of modified metal oxide surfaces. 1. Doping ions on alumina, magnesia, and silica. J. Phys. Chem. 99, 5117–5125 (1995)

    Article  CAS  Google Scholar 

  73. N. Cardona-Martínez, J.A. Dumesic, Acid strength of silica-supported oxide catalysts studied by microcalorimetric measurements of pyridine adsorption. J. Catal. 127, 706–718 (1991)

    Article  Google Scholar 

  74. e.g., Derouane, C.D. Chang, Confinement effects in the adsorption of simple bases by zeolites. Microp. Mesop. Mater. 35–36, 425–433 (2000)

    Article  Google Scholar 

  75. P.A. Jacobs, Carboniogenic activity of zeolites (Elsevier, New York, 1977)

    Google Scholar 

  76. J.R. Anderson, K.C. Pratt, Introduction to characterization and testing of catalysts (Academic Press, New York, 1985)

    Google Scholar 

  77. H. Knözinger, Specific poisoning and characterization of catalytically active oxide surfaces. Adv. Catal. 25, 184–271 (1976)

    Google Scholar 

  78. G. Busca, V. Lorenzelli, Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide. Mater. Chem. Phys. 7, 89–126 (1982)

    Article  CAS  Google Scholar 

  79. H. Knözinger, S. Huber, IR spectroscopy of small and weakly interacting molecular probes for acidic and basic zeolites. J. Chem. Soc., Faraday Trans. 94, 2047–2059 (1998)

    Article  Google Scholar 

  80. K.I. Hadjiivanov, G.N. Vayssilov, Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 47, 307–511 (2002)

    CAS  Google Scholar 

  81. F. Thibault-Starzyk, A. Travert, J. Saussey, J.-C. Lavalley, Correlation between activity and acidity on zeolites: a high temperature infrared study of adsorbed acetonitrile. Top. Catal. 6, 111–118 (1998)

    Article  CAS  Google Scholar 

  82. F. Babou, G. Coudurier, J.C. Védrine, Acidic properties of sulfated zirconia: an infrared study. J. Catal. 152, 341–349 (1995)

    Article  CAS  Google Scholar 

  83. J.C. Lavalley, Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal. Today 27, 377–401 (1996)

    Article  CAS  Google Scholar 

  84. S. Diallo-Garcia, D. Laurencin, J.M. Krafft, S. Casale, M.E. Smith, H. Lauron-Pernot, G. Costentin, Influence of magnesium substitution on the basic properties of hydroxyapatites. J. Phys. Chem. C 115, 24317–24327 (2011)

    Article  CAS  Google Scholar 

  85. S. Diallo-Garcia, M. Ben Osman, J.M. Krafft, S. Casale, C. Thomas, J. Kubo, G. Costentin, Identification of surface basic sites and acid–base pairs of hydroxyapatite. J. Phys. Chem. C 118, 12744–12757 (2014)

    Article  CAS  Google Scholar 

  86. J. Huang, Y. Jiang, V.R. Reddy Marthal, W. Wang, B. Sulikowski, M. Hunger, In situ 1H MAS NMR investigations of the H/D exchange of alkylaromatic hydrocarbons on zeolites HY, La, Na-Y and H.ZSM-5, Microp. Mesop. Mater. 99, 86–90 (2007)

  87. A. Zheng, S.J. Huang, S.B. Liu, F. Deng, Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Phys. Chem. Chem. Phys. 13, 14889–14901 (2011)

    Article  CAS  Google Scholar 

  88. A. Zheng, S.B. Liu, F. Deng, Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecule. Solid State Nucl. Magn. Reson. 55–56, 12–27 (2013)

    Article  CAS  Google Scholar 

  89. A. Zheng, F. Deng, S.B. Liu, Acidity characterization of solid acid catalysts by solid-state 31P NMR of adsorbed phosphorus containing probe molecules. Ann. Rep. NMR Spectrosc. 81, 47–109 (2014)

    Article  CAS  Google Scholar 

  90. M. Hunger, NMR spectroscopy for the characterisation of surface acidity and basicity, in ed by G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Handbook of Heterogeneous Catalysis, vol 2 (Wiley, Weinheim, 2008), pp 1163–1178

  91. D. Freude, T. Loeser, D. Michel, U. Pingel, D. Prochnow, 17O NMR studies of low silicate zeolites. Solid State Nucl. Magn. Reson. 20, 46–60 (2001)

    Article  CAS  Google Scholar 

  92. V. Bosacek, R. Klik, F. Genoni, G. Spano, F. Rivetti, F. Figueras, Terminal and bridging methoxys on zeolites detected by 13C magic angle spinning NMR spectroscopy. Magn. Reson. Chem. 37, S135–S141 (1999)

    Article  CAS  Google Scholar 

  93. A.H. Cohen, B.M. Hoffman, Acceptor strengths of some Group IV Lewis acids by electron paramagnetic resonance studies of their complexes with aliphatic nitroxides. Inorg. Chem. 13, 1484–1491 (1974)

    Article  CAS  Google Scholar 

  94. Z. Sojka, Molecular aspects of catalytic reactivity. Application of EPR spectroscopy to studies of the mechanism of heterogeneous catalytic reactions. Catal. Rev. Sci. Eng. 37, 461–512 (1995)

    Article  CAS  Google Scholar 

  95. M. Chiesa, E. Giamello, M. Che, EPR characterization and reactivity of surface-localized inorganic radicals and radical ions. Chem. Rev. 110, 1320–1347 (2010)

    Article  CAS  Google Scholar 

  96. P. Pietrzyk, Z. Sojka, E. Giamello, Electron paramagnetic resonance spectroscopy, in Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, ed. by M. Che, J.C. Védrine (Wiley-VCH, Weinheim, 2012), pp. 343–406

  97. J.H. Lunsford, A study of surface interactions on γ-alumina, silica-alumina, and silica-magnesia using the EPR spectra of adsorbed nitric oxide. J. Catal. 14, 379–395 (1969)

    Article  CAS  Google Scholar 

  98. J.H. Lunsford, L.W. Zingery, M.P.M. Rosynek, Exposed aluminium ions as active sites on γ-alumina. J. Catal. 38, 179–188 (1975)

    Article  CAS  Google Scholar 

  99. M.C. Paganini, M. Chiesa, P. Martino, E. Giamello, EPR study of the surface basicity of calcium oxide. 1. The CaO–NO Chemistry. J. Phys. Chem. B 106, 12531–12536 (2002)

    Article  CAS  Google Scholar 

  100. D.M. Brouwer, Oxidation of aromatic hydrocarbons by silica-alumina. J. Catal. 1, 372–378 (1962)

    Article  CAS  Google Scholar 

  101. B.D. Flockhar, J. Scott, C. Naccache, R.C. Pink, Dipolar nature of alumina surface. Electron-donor properties of aluminas. JCS Chem. Comm. 11, 238–242 (1965)

    Google Scholar 

  102. B.D. Flockhar, J. Scott, R.C. Pink, Electron acceptor properties of aluminas, Trans. Faraday Soc. 62, 562, 730 (1966)

  103. B.D. Flockhar, J. Scott, R.C. Pink, Electron donor properties of aluminas. Trans. Faraday Soc. 65, 542–551 (1969)

    Article  Google Scholar 

  104. Y. Zhang, Z. Liu, S. Ren, W. Wang, B. Shen, Study of the basic centers and active oxygen species of solid base catalysts for oxidation of iso-mercaptans. Appl. Catal. A Gen. 473, 125–131 (2014)

    Article  CAS  Google Scholar 

  105. R. Borade, A. Sayari, A. Adnot, S. Kaliaguine, Characterization of acidity in ZSM-5 zeolites: an X-ray photoelectron and IR spectroscopy study. J. Phys. Chem. 94, 5989–5994 (1990)

    Article  CAS  Google Scholar 

  106. M. Johansson, K. Klier, Surface acidity (Brønsted and Lewis), by high resolution X-ray photoelectron spectroscopy. Top. Catal. 4, 99–108 (1997)

    Article  CAS  Google Scholar 

  107. Y. Okamoto, M. Ogawa, A. Maezawa, T. Imanaka, Electronic structure of zeolites studied by X-ray photoelectron spectroscopy. J. Catal. 112, 427–436 (1988)

    Article  CAS  Google Scholar 

  108. M. Huang, A. Adnot, S. Kaliaguine, Characterization of basicity in alkaline cation faujasite zeolites—an XPS study using pyrrole as a probe molecule. J. Catal. 137, 322–332 (1992)

    Article  CAS  Google Scholar 

  109. C. Guimon, A. Gervasini, A. Auroux, Acidic character of metal-loaded amorphous and crystalline silica–aluminas determined by XPS and adsorption calorimetry. J. Phys. Chem. B 103, 7195–7205 (1999)

    Article  CAS  Google Scholar 

  110. L. Silvester, J.-F. Lamonier, R. Vannier, C. Lamonier, M. Capron, A.-S. Mamede, F. Pourpoint, A. Gervasini, F. Dumeignil, Structural, textural and acid–base properties of carbonate-containing hydroxyapatites. J. Mater. Chem. A 2, 11073–11090 (2014)

    Article  CAS  Google Scholar 

  111. A. Gervasini, C. Messi, D. Flahaut, C. Guimon, Acid properties of iron oxide dispersed on silica-zirconia supports with different Zr content. Appl. Catal. A 367, 113–121 (2009)

    Article  CAS  Google Scholar 

  112. C. Guimon, A. Gervasini, A. Auroux, XPS Study of the adsorption of SO2 and NH3 over supported tin dioxide catalysts used in de-NOx catalytic reaction. J. Phys. Chem. B 105, 10316–10325 (2001)

    Article  CAS  Google Scholar 

  113. J. Sauer, Acidic sites in heterogeneous catalysis: structure, properties and activity. J. Mol. Catal. 54, 312–323 (1989)

    Article  CAS  Google Scholar 

  114. M. Brändle, J. Sauer, Acidity differences between inorganic solids induced by their framework structure. A combined quantum mechanics/molecular mechanics ab initio study on zeolites. J. Am. Chem. Soc. 120, 1556–1570 (1998)

    Article  Google Scholar 

  115. J. Datka, M. Boczar, P. Rymarowicz, Heterogeneity of OH groups in NaH-ZSM-5 zeolite studied by infrared spectroscopy. J. Catal. 114, 368–376 (1988)

    Article  CAS  Google Scholar 

  116. H.V. Brand, L.A. Curtis, L.E. Iton, J. Phys. Chem. 96, 7725 (1992)

    Article  CAS  Google Scholar 

  117. X. Wang, M.A.N.D.A. Lemos, F. Lemos, F. Ramôa Ribeiro, Activity-acidity relationships in solid acid catalysis—a quantum chemical study, Stud. Surf. Sci. Catal., 133, 501–506 (2001)

  118. A. Wojtaszek, M. Ziolek, F. Tielens, Probing acid–base properties in group V aluminum containing zeolites. J. Phys. Chem. C 116, 2462–2468 (2012)

    Article  CAS  Google Scholar 

  119. M. Sierka, J. Sauer, Proton mobility in chabazite, faujasite, and ZSM-5 zeolite catalysts. Comparison based on ab initio Calculations. J. Phys. Chem. B 105, 1603–1613 (2001)

    Article  CAS  Google Scholar 

  120. P. Borges, R. Ramos-Pinto, M.A.N.D.A. Lemos, F. Lemos, J.C. Védrine, e.g., Derouane, F. Ramôa-Ribeiro, Activity–acidity relationship for alkane cracking over zeolites: n-hexane cracking over HZSM-5, J. Mol. Catal. A Chem., 229, 127–135 (2005)

  121. P. Borges, R. Ramos-Pinto, P. Oliveira, M.A.N.D.A. Lemos, F. Lemos, J.C. Védrine, e.g., Derouane, F. Ramôa-Ribeiro, Activity–acidity relationship for alkane cracking over zeolites: n-hexane cracking over HZSM-5, J. Mol. Catal. A Chem., 305, 60–68 (2009)

  122. P. Oliveira, P. Borges, R. Ramos-Pinto, M.A.N.D.A. Lemos, F. Lemos, J.C. Védrine, F. Ramôa-Ribeiro, Light olefin transformation over ZSM-5 zeolites with different acid strengths—a kinetic model, Appl. Catal. A Gen., 384, 177–185 (2010)

  123. K. Tanabe, H. Hattori, Chem. Lett. 625–632 (1976)

  124. H. Pines, in The Chemistry of Catalytic Hydrocarbon Conversions (Academic Press, San Diego, 1981)

  125. H. Pines, Use of organic probes in detecting active sites in heterogeneous catalysis. J. Catal. 78, 1–16 (1982)

    Article  CAS  Google Scholar 

  126. J.N. Miale, N.Y. Chen, P.B. Weisz, Catalysis by crystalline aluminosilicates IV. Attainable catalytic cracking rate constants, and superactivity. J. Catal. 6, 278–287 (1966)

    Article  CAS  Google Scholar 

  127. M. Guisnet, N.S. Gnep, Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disproportionation and aromatization. Appl. Catal. A: Gen. 146, 33–64 (1996)

    Article  CAS  Google Scholar 

  128. E. Dumitriu, V. Hulea, I. Fechete, C. Catrinescu, A. Auroux, J.F. Lacaze, C. Guimon, Prins condensation of isobutylene and formaldehyde over Fe-silicates of MFI structure. Appl. Catal. A: Gen. 181, 15–28 (1999)

    Article  CAS  Google Scholar 

  129. E. Dumitriu, V. Hulea, I. Fechete, A. Aurox, J.F. Lacaze, C. Guimon, The aldol condensation of lower aldehydes over MFI zeolites with different acidic properties. Microp. Mesopor. Mater. 43, 341–359 (2001)

    Article  CAS  Google Scholar 

  130. E. Dumitriu, C. Guimon, V. Hulea, D. Lutic, I. Fechete, Transalkylation of toluene with trimethyl benzenes catalyzed by various AFI catalysts. Appl. Catal. A: Gen. 217, 211–221 (2002)

    Article  Google Scholar 

  131. M. Guisnet, C. Thomazeau, J.L. Lemberton, S. Mignard, Model reaction for the in situ characterization of the hydrogenating and acid properties of industrial hydrocracking catalysts. J. Catal. 151, 102–110 (1995)

    Article  CAS  Google Scholar 

  132. C. Mirodatos, A. Abou Kaïs, J.C. Védrine, P. Pichat, D. Barthomeuf, Correlations of cracking properties of Mg–Y zeolites with acidic and basic properties, J. Phys. Chem., 80, 2366–2371 (1976)

  133. M.A. Aramendıá, V. Boráu, I.M. Garcia, C. Jiménez, A. Marinas, J.M. Marinas, A. Porras, F.J. Urbano, Comparison of different organic test reactions over acid–base catalysts. Appl. Catal. A 184, 115–125 (1999)

    Article  Google Scholar 

  134. K. Higuchi, M. Onaka, Y. Izumi, Solid acid and base-catalyzed cyanosilylation of carbonyl compounds with cyanotrimethylsilane. Bull. Chem. Soc. Jpn 66, 2016–2032 (1993)

    Article  CAS  Google Scholar 

  135. M.P. Rosynek, F.L. Strey, The nature of active sites on catalytic alumina: information from site poisoning by sulfur-containing molecules. J. Catal. 41, 312–321 (1976)

    Article  CAS  Google Scholar 

  136. A. Corma, V. Fornes, R.M. Martin-Arenda, H. Garcia, J. Primo, Zeolites as base catalysts: condensation of aldehydes with derivatives of malonic esters. Appl. Catal. 59, 237–248 (1990)

    Article  CAS  Google Scholar 

  137. H. Noller, K. Tomke, Transition states of catalytic dehydration and dehydrogenation of alcohols. J. Mol. Catal. 6, 375–392 (1979)

    Article  CAS  Google Scholar 

  138. R. Tanner, D. Enache, R.P.K. Wells, G. Kelly, J. Casci, G.J. Hutchings, Comments on the use of 2-methylbut-3-yn-2-ol decomposition as a probe reaction for the potential reactivity Mg–Al hydrotalcites as base catalysts. Catal. Lett. 100, 259–265 (2005)

    Article  CAS  Google Scholar 

  139. W.L. Jorgensen, J.M. Briggs, A priori pKa calculations and the hydration of organic anions. J. Am. Chem. Soc. 111, 4190–4197 (1989)

    Article  CAS  Google Scholar 

  140. P. Carniti, A. Gervasini, S. Biella, A. Auroux, Intrinsic and effective acidity study of niobic acid and niobium phosphate by a multitechnique approach. Chem. Mater. 17, 6128–6135 (2005)

    Article  CAS  Google Scholar 

  141. P. Carniti, A. Gervasini, S. Biella, A. Auroux, Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: fructose dehydration reaction. Catal. Today 118, 373–378 (2006)

    Article  CAS  Google Scholar 

  142. P. Carniti, A. Gervasini, S. Biella, Determination of catalyst surface acidity in liquids by a pulse liquid chromatographic technique. Ads. Sci. Tech. 23, 739–749 (2008)

    Article  Google Scholar 

  143. P. Carniti, A. Gervasini, in LiquidSolid Adsorption Properties: Measurements of Effective Surface Acidity of Solid Catalysts, ed by A. Auroux, Chap. 17 (Springer, Berlin, 2013), pp. 543–551

  144. A. Gervasini, A. Auroux, Combined use of titration calorimetry and spectrofluorimetry for the screening of the acidity of solid catalysts in different liquids. Thermochim. Acta 567, 8–14 (2013)

    Article  CAS  Google Scholar 

  145. P. Carniti, A. Gervasini, C. Tiozzo, M. Guidotti, Niobium-containing hydroxyapatites as amphoteric catalysts: synthesis, properties and activity. ACS Catal. 4, 469–479 (2014)

    Article  CAS  Google Scholar 

  146. P. Carniti, A. Gervasini, M. Marzo, Silica–niobia oxides as viable acid catalysts in water: effective vs. intrinsic acidity. Catal. Today 152, 42–47 (2010)

    Article  CAS  Google Scholar 

  147. S. Bennici, O. Otman, A. Auroux, Is there any relationship between acid strength of solid catalysts and their catalytic activity in fructose dehydration reaction? Submitted to the 24th North American catalysis society meeting (NAM24), Pittsburg, USA, 14–19 June 2015

  148. J.C. Védrine, Revisiting active sites in heterogeneous catalysis: their structure and their dynamic behaviour. Appl. Catal. A Gen. 474, 40–50 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thankfully acknowledges fascinating discussions with Dr. Aline Auroux from “Institut de recherches sur la catalyse et l’environnement, Université C. Bernard-Lyon1” and Pr. Antonella Gervasini from “Università degli studi di Milano”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques C. Védrine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Védrine, J.C. Acid–base characterization of heterogeneous catalysts: an up-to-date overview. Res Chem Intermed 41, 9387–9423 (2015). https://doi.org/10.1007/s11164-015-1982-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-1982-9

Keywords

Navigation