Skip to main content
Log in

Effect of pyrolysis temperature and catalyst on production of bio-oil and bio-char from avocado seeds

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The slow pyrolysis of avocado seeds (Persea americana) was performed in a fixed-bed tubular reactor with (KOH, Al2O3) and without a catalyst, at three temperatures ranging from 400 to 600 °C, with heating rates of 50 °C/min. The amounts of bio-char, bio-oil and gas produced, as well as the compositions of the resulting bio-oils, were determined by GC–MS and FT-IR. The influences of pyrolysis parameters, such as temperature and catalysts, on product yields were subsequently investigated. Both temperature and catalysts were determined to be the main factors affecting the conversion (liquid+gas products) of avocado seeds into solid, liquid and gaseous products. The highest liquid yield (37.5 %) including water was obtained using 10 % KOH catalyst at 600 °C at a heating rate of 50 °C/min when employing 0.224 > Dp > 0.150 mm particle size raw material and a 100 cm3/min sweeping gas flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Meier, O. Faix, Bioresour. Technol. 68, 71–77 (1999)

    Article  CAS  Google Scholar 

  2. E. Butler, G. Devlin, D. Meier, K. McDonnell, Renew. Sustain. Energy Rev. 15, 4171–4186 (2011)

    Article  CAS  Google Scholar 

  3. P.T. Patil, U. Armbruster, A. Martin, J. Supercrit. Fluid (2014 in press)

  4. S. Xiu, A. Shahbazi, Renew. Sustain. Energy Rev. 16, 4406–4414 (2012)

    Article  CAS  Google Scholar 

  5. Y. Lin, S. Tanaka, Appl. Microbiol. Biotechnol. 69, 627–642 (2006)

    Article  CAS  Google Scholar 

  6. Y. Matsumura, T. Minowa, B. Potic, S.R.A. Kersten, W. Prins, W.P.M. van Swaaij et al., Biomass Bioenergy 29, 268–292 (2005)

    Google Scholar 

  7. T. Aysu, Biomass Bioenergy 41, 139–144 (2012)

    Article  CAS  Google Scholar 

  8. H. Durak, T. Aysu, Bioresour. Technol. 166, 309–317 (2014)

    Article  CAS  Google Scholar 

  9. S. Ucar, S. Karagöz, J. Anal. Appl. Pyrolysis 84, 151–156 (2009)

    Article  CAS  Google Scholar 

  10. J. Simitzis, J. Anal. Appl. Pyrolysis 30, 161–171 (1994)

    Article  CAS  Google Scholar 

  11. P.T. Williams, N. Nugranad, Energy 25, 493–513 (2000)

    Article  CAS  Google Scholar 

  12. H.F. Gerçel, J. Anal. Appl. Pyrolysis 92, 233–238 (2011)

    Article  Google Scholar 

  13. F. Abnisa, A. Arami-Niya, W.M.A. Wan Duad, J.N. Sahu, I.M. Noor, Energy Convers. Manag. 76, 1073–1082 (2013)

    Article  CAS  Google Scholar 

  14. J.L. Zheng, J. Anal. Appl. Pyrolysis 83, 205–212 (2008)

    Article  CAS  Google Scholar 

  15. M.I. Bird, C.M. Wurster, P.H. De Paula Silva, A.M. Bass, R. De Nys, Bioresour. Technol. 102(2), 1886–1891 (2011)

    Article  CAS  Google Scholar 

  16. K. Chaiwong, T. Kiatsiriroat, N. Vorayos, C. Thararax, Biomass Bioenergy 56, 600–606 (2013)

    Article  CAS  Google Scholar 

  17. V.K. Singh, A.B. Soni, S. Kumar, R.K. Singh, Bioresour. Technol. 151, 432–435 (2014)

    Article  CAS  Google Scholar 

  18. K.P. Shadangi, K. Mohanty, Fuel 115, 434–442 (2014)

    Article  CAS  Google Scholar 

  19. M.A. Kader, M.R. Islam, M. Parveen, H. Haniu, K. Takai, Bioresour. Technol. 149, 1–7 (2013)

    Article  CAS  Google Scholar 

  20. C.A. Mullen, A.A. Boateng, S.E. Reichenbach, Fuel 111, 797–804 (2013)

    Article  CAS  Google Scholar 

  21. D. Angın, Bioresour. Technol. 128, 593–597 (2013)

    Article  Google Scholar 

  22. C.S. Lira, F.M. Berruti, P. Palmisano, F. Berruti, C. Briens, A.A.B. Pécora, J. Anal. Appl. Pyrolysis 99, 23–31 (2013)

    Article  CAS  Google Scholar 

  23. N.K. Nayan, S. Kumar, R.K. Singh, Fuel 103, 437–443 (2013)

    Article  CAS  Google Scholar 

  24. Y. Kar, N. Şen, Environ. Prog. Sustain. Energy 31(4), 619–627 (2012)

    Article  CAS  Google Scholar 

  25. R.K. Singh, K.P. Shadangi, Fuel 90, 2538–2544 (2011)

    Article  CAS  Google Scholar 

  26. G. Duman, Ç. Okutucu, S. Ucar, R. Stahl, J. Yanik, Bioresour. Technol. 102, 1869–1878 (2011)

    Article  CAS  Google Scholar 

  27. Ö. Onay, Fuel 86, 1452–1460 (2007)

    Article  CAS  Google Scholar 

  28. E. Pütün, B.B. Uzun, A.E. Pütün, Bioresour. Technol. 97, 701–710 (2006)

    Article  Google Scholar 

  29. C. Chaiyaa, P. Reubroycharoen, Energy Procedia 34, 905–911 (2013)

    Article  Google Scholar 

  30. M.A.Z. Dos santos, T.V.R. Alicieo, C.M.P. Pereira, G. Ramis-Ramos, C.R.B. Mendonca, J. Am. Oil Chem. Soc. 91, 19–27 (2014)

    Article  CAS  Google Scholar 

  31. Y.Y. Song, P.J. Barlow, Food Chem. 88, 411 (2004)

    Article  Google Scholar 

  32. T.A. Geissman, H.F.K. Dittmar, Phytochemistry 4, 359 (1965)

    Article  CAS  Google Scholar 

  33. M.P. Elizalde-González, J. Mattusch, A.A. Peláez-Cid, R. Wennrich, J. Anal. Appl. Pyrolysis 78, 185–193 (2007)

    Article  Google Scholar 

  34. L. Alvares Rodrigues, M.L.C. Pinto da Silva, M.O. Alvarez-Mendes, A. Reis Coutinho, G.P. Thim, Chem. Eng. J. 174, 49–57 (2011)

    Article  Google Scholar 

  35. Technical Association of the Pulp and Paper Industry, Tappi test methods. (Tappi Press, Atlanta, 1998–1999)

  36. L.E. Wise, E.C. John, Wood chemistry, 2nd edn. (Reinhold Publishing, New York, 1952)

    Google Scholar 

  37. Z.G. Liu, F.S. Zhang, Energy Convers. Manag. 49, 3498–3504 (2008)

    Article  CAS  Google Scholar 

  38. Y.J. Qian, C.J. Zuo, J. Tan, J.H. He, Energy 32, 196–202 (2007)

    Article  CAS  Google Scholar 

  39. P. Garside, P. Wyeth, Stud. Conserv. 48, 269–275 (2003)

    Article  CAS  Google Scholar 

  40. F. Abnisa, W.M.A. Wan Daud, W.N.W. Husin, J.N. Sahu, Biomass Bioenergy 35, 1863–1872 (2011)

    Article  CAS  Google Scholar 

  41. W. Chen, P. Kuo, Energy 36, 6451–6460 (2011)

    Article  CAS  Google Scholar 

  42. J. Guo, A.C. Lua, J. Therm. Anal. Calorim. 59, 763–774 (2000)

    Article  CAS  Google Scholar 

  43. T. Fisher, N. Hajaligol, B. Waymack, D. Kellogg, J. Anal. Appl. Pyrol. 62, 331–349 (2002)

    Article  CAS  Google Scholar 

  44. M. Ertas, M.H. Alma, J. Anal. Appl. Pyrol. 88, 22–29 (2010)

    Article  CAS  Google Scholar 

  45. Ö. Onay, Fuel Process. Technol. 88, 523–531 (2007)

    Article  CAS  Google Scholar 

  46. A.E. Pütün, E. Apaydın, E. Pütün, Energy 27, 703–713 (2002)

    Article  Google Scholar 

  47. P. Wang, S. Zhan, H. Yu, X. Xue, N. Hong, Bioresour. Technol. 101, 3236–3241 (2010)

    Article  CAS  Google Scholar 

  48. S. Raza Naqvi, Y. Uemuraa, S. Bt Yusup, J. Anal. Appl. Pyrolysis 106, 57–62 (2014)

    Article  Google Scholar 

  49. T. Aysu, M.M. Küçük, Energy 64, 1002–1025 (2014)

    Article  CAS  Google Scholar 

  50. L. García, M.L. Salvador, J. Arauzo, R. Bilbao, J. Anal. Appl. Pyrolysis 58–59, 491–501 (2001)

    Article  Google Scholar 

  51. J.M. Encinar, F.J. Beltran, A. Ramiro, J.F. Gonzalez, Fuel Process. Technol. 55, 219–233 (1998)

    Article  CAS  Google Scholar 

  52. F. Ateş, M. Aslı Işıkdağ, Fuel 88, 1991–1997 (2009)

    Article  Google Scholar 

  53. S. Du, Y. Sun, D.P. Gamliel, J.A. Valla, G.M. Bollas, Bioresour. Technol. 169, 188–197 (2014)

    Article  CAS  Google Scholar 

  54. R.P. Adams, Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy, 3rd edn. (Allured Publishing Corporation, Carol Stream, IL, 2001)

    Google Scholar 

  55. J. Adam, E. Antonakou, A. Lappas, M. Stöcker, M.H. Nilsen, A. Bouzga, J.E. Hustad, G. Øye, Microporous Mesoporous Mater. 96, 93–101 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Durak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durak, H., Aysu, T. Effect of pyrolysis temperature and catalyst on production of bio-oil and bio-char from avocado seeds. Res Chem Intermed 41, 8067–8097 (2015). https://doi.org/10.1007/s11164-014-1878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1878-0

Keywords

Navigation