Skip to main content
Log in

Terminal C≡C triple bond hydrogenation using immobilized Wilkinson’s catalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, we try to hydrogenate selectively phenylacetylene to styrene and 3-phenylpropyne to allylbenzene using immobilized or pure Wilkinson’s catalyst. The catalyst was immobilized using two approaches—immobilization using ionic exchange and immobilization using covalent bonding. In the first case, the smectite minerals (hectorite and montmorillonite) were used as the supports. In the second case, MCM-41 and SBA-15 were used as the supports. Both types of immobilization were successful and the solid products were characterized. For the covalent bond formation, it was necessary to first modify the surface of the silica material. The modification was carried out using two substances, one adding an amino group to the silica material, and the second adding a phenyl group to the material. The selectivity of hydrogenation of both substances was higher using heterogeneous catalyst in the case of phenylacetylene. In the case of phenylpropyne, no difference in selectivity using Wilkinson’s catalyst in homogeneous or heterogeneous arrangement was observed. The type of immobilization has no influence on either activity or selectivity of catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Cornils, W.A. Herrmann, R. Schögl, C.H. Wong, Catalysis from A to Z. A Concise Encyclopedia (Wiley-VCH, Weinheim, 2000)

    Google Scholar 

  2. J. Sedláček, J. Vohlídal, Collect. Czech. Chem. Commun. 68, 1745 (2003)

    Article  Google Scholar 

  3. J.A. Osborn, F.H. Jardine, J.F.Young, G. Wilkinson, J. Chem. Soc. 1, 1711 (1966)

    Google Scholar 

  4. J.V. Crivello, M. Fan, J. Polym. Sci. Polym. Chem. 30, 1 (1992)

    Article  CAS  Google Scholar 

  5. I.D. Kostas, K.A. Vallianatou, P. Kyritsis, J. Zedník, J. Vohlídal, Inorg. Chim. Acta 357(10), 3084 (2004)

    Article  CAS  Google Scholar 

  6. A. Biffis, E. Castello, M. Zecca, M. Basato, Tetrahedron 57, 10391 (2001)

    Article  CAS  Google Scholar 

  7. S. Murai, R. Sugise, N. Sonoda, Angew. Chem. Int. Ed. Engl. 20, 481 (1981)

    Article  Google Scholar 

  8. F. Solymosi, A. Erdöhelyi, in New Horizons in Catalysis, Studies in Surface Science and Catalysis 7B, ed. by T. Seiyama, K. Tanabe (Elsevier, Amsterdam, 1980), pp. 1448–1449

  9. R. Bertani, R.A. Michelin, M. Mozzon, A. Sassi, M. Basato, A. Biffis, G. Martinati, M. Zecca, Inorg. Chem. Commun. 4, 281 (2001)

    Article  CAS  Google Scholar 

  10. A. Nakazato, I. Saeed, T. Katsumata, M. Shiotsuki, T. Masuda, J. Zednik, J. Vohlidal, J. Polym. Sci. Polym. Chem. 43, 19–4530 (2005)

    Article  Google Scholar 

  11. T. Opstal, J. Zedník, J. Sedláček, J. Svoboda, J. Vohlídal, F. Verpoort, Collect. Czech. Chem. Commun. 67, 1858 (2002)

    Article  CAS  Google Scholar 

  12. J. Vohlídal, J. Sedláček, N. Patev, O. Lavastre, P.H. Dixneuf, S. Cabioch, H. Balcar, J. Pfleger, V. Blechta, Macromolecules 32, 6439 (1999)

    Article  Google Scholar 

  13. R.D. Gillard, J.A. Osborn, P.B. Stockwell, G. Wilkinson, Proc. Chem. Soc. 1, 284 (1964)

    Google Scholar 

  14. J.A. Osborn, G. Wilkinson, J.F. Young, Chem. Commun. 2, 17 (1965)

    Google Scholar 

  15. J.F. Young, J.A. Osborn, F.H. Jardine, G. Wilkinson, Chem. Commun. 131 (1965)

  16. M.M. Taqui Khan, M.R.H. Siddiqui, S.A. Samad, Inorg. Chem. 28, 4427 (1989)

    Article  Google Scholar 

  17. M.M. Taqui Khan, M.R.H. Siddiqui, H.C. Bajaj, G. Ramachandraiah, Polyhedron 10, 2729 (1991)

  18. M. Bartók, G. Szöllösi, Á. Mastalir, I. Dékány, J. Mol. Catal. 139, 227 (1999)

    Article  Google Scholar 

  19. L. Huang, J.Ch. Wu, S. Kavi, React. Kinet. Catal. Lett. 82, 65 (2004)

    Google Scholar 

  20. C. Merckle, S. Haubrich, J. Blumel, J. Organomet. Chem. 627, 44 (2001)

    Article  CAS  Google Scholar 

  21. J. Kramer, E. Nollen, W. Buis, W.L. Driessen, J. Reedijk, React. Funct. Pol. 57, 1 (2003)

    Article  CAS  Google Scholar 

  22. C. Merckle, J. Blumel, Top. Catal. 34, 5 (2005)

    Article  CAS  Google Scholar 

  23. I.V. Koptyug, K.V. Kovtunov, S.R. Burt, M.S. Anwar, H.S. Christian, A. Pines, R.Z. Sagdeev, J. Am. Chem. Soc. 129, 5580 (2007)

    Article  CAS  Google Scholar 

  24. H. Balcar, J. Sedláček, J. Čejka, J. Vohlídal, Macromol. Rapid Commun. 23, 32 (2002)

    Article  CAS  Google Scholar 

  25. H. Balcar, J. Sedláček, J. Svoboda, N. Žilková, J. Vohlídal, M. Pacovská, Collect. Czech. Chem. Commun. 68, 1861 (2003)

    Article  CAS  Google Scholar 

  26. P. Kooyman, M. Slabová, V. Bosáček, J. Čejka, J. Rathouský, A. Zukal, Collect. Czech. Chem. Commun. 66, 555 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the Ministry of Education of the Czech Republic no.: MSM6056137301 and Grant Agency of Czech Republic Grants No: 104/07/1239 and 203/08/H032-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Červený.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitmannová, E., Jirásek, P., Rak, J. et al. Terminal C≡C triple bond hydrogenation using immobilized Wilkinson’s catalyst. Res Chem Intermed 36, 511–522 (2010). https://doi.org/10.1007/s11164-010-0162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-010-0162-1

Keywords

Navigation