Skip to main content

Advertisement

Log in

Comprehensive technology and economic evaluation based on the promotion of large-scale carbon capture and storage demonstration projects

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The technology known as carbon capture and storage (CCS) can significantly reduce greenhouse gas emissions on a massive scale. The whole process and large-scale CCS projects are still in the exploratory stage from project demonstration stage to commercialization stage because to the significant expenditure, prolonged operating term, and numerous technological connections involved. The investment cost of CCS, the advancement of CCS technology, and the safety of CCS operation are its primary points of emphasis. There are several ways to successfully absorb carbon dioxide (CO2), but they all have the drawback of having large investment costs. For the smooth development of capturing technology, the issues of cost and efficiency must be resolved. Transporting CO2 is usually necessary since its source and storage location are dispersed and far apart. This is seen to be the most challenging issue. The secret to ensuring the success of CCS projects is understanding how to perform efficient economic evaluation when making investment decisions in light of the high cost of CCS. The influence of measures like increased carbon taxes and government subsidies will hasten the commercialization of CCS projects. We advise a thorough assessment of CCS projects to support their strategic positioning with nations and investors and deepen decision-makers' understanding of the technical feasibility and economics of CCS projects to obtain a more thorough support. This recommendation is based on the progress and challenges in the development of each module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  • Abadie LM, Chamorro JM (2008) European CO2 prices and carbon capture investments. Energy Econ 30(6):2992–3015

    Article  Google Scholar 

  • Agaton CB (2021) Application of real options in carbon capture and storage literature: valuation techniques and research hotspots. Sci Total Environ 795:148683

    Article  CAS  Google Scholar 

  • Aghel B, Behaein S, Alobiad F (2022) CO2 capture from biogas by biomass-based adsorbents: a review. Fuel 328:125276

    Article  CAS  Google Scholar 

  • Aghel B, Janati S, Wongwises S, Shadloo MS (2022) Review on CO2 capture by blended amine solutions. Int J Greenh Gas Control 119:103715

    Article  CAS  Google Scholar 

  • Ahmad N, Leo C, Ahmad A, Mohammad A (2016) Separation of CO2 from hydrogen using membrane gas absorption with PVDF/PBI membrane. Int J Hydrog Energy 41(8):4855–4861

    Article  CAS  Google Scholar 

  • Ahmad MZ, Peters TA, Konnertz NM, Visser T, Téllez C, Coronas J, Fila V, de Vos WM, Benes NE (2020) High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Sep Purif Technol 230:115858

    Article  CAS  Google Scholar 

  • Ajayi T, Gomes JS, Bera A (2019) A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet Sci 16:1028–1063

    Article  CAS  Google Scholar 

  • Ajayi T, Awolayo A, Gomes JS, Parra H, Hu J (2019) Large scale modeling and assessment of the feasibility of CO2 storage onshore Abu Dhabi. Energy 185:653–670

    Article  Google Scholar 

  • Al Baroudi H, Awoyomi A, Patchigolla K, Jonnalagadda K, Anthony EJ (2021) A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage. Appl Energy 287:116510

    Article  CAS  Google Scholar 

  • Alabi TM, Lu L, Yang Z (2022) Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy. Appl Energy 314:118997

    Article  Google Scholar 

  • Al-Abri A, Amin R (2010) Phase behaviour, fluid properties and recovery efficiency of immiscible and miscible condensate displacements by SCCO2 injection: experimental investigation. Transp Porous Media 85(3):743–756

    Article  CAS  Google Scholar 

  • Ali M, Pan B, Yekeen N, Al-Anssari S, Al-Anazi A, Keshavarz A, Iglauer S, Hoteit H (2022) Assessment of wettability and rock-fluid interfacial tension of caprock: implications for hydrogen and carbon dioxide geo-storage. Int J Hydrog Energy 47(30):14104–14120

    Article  CAS  Google Scholar 

  • Aliabadi DE (2020) Decarbonizing existing coal-fired power stations considering endogenous technology learning: a Turkish case study. J Clean Prod 261:121100

    Article  Google Scholar 

  • Al-Khdheeawi EA, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S (2018) Effect of wettability heterogeneity and reservoir temperature on CO2 storage efficiency in deep saline aquifers. Int J Greenh Gas Control 68:216–229

    Article  CAS  Google Scholar 

  • AlRassas AM, Ren S, Sun R, Thanh HV, Guan Z (2021) CO2 storage capacity estimation under geological uncertainty using 3-D geological modeling of unconventional reservoir rocks in Shahejie Formation, block Nv32, China. J Petrol Explor Prod Technol 11(6):2327–2345

    Article  CAS  Google Scholar 

  • Altman SJ, Aminzadeh B, Balhoff MT, Bennett PC, Bryant SL, Cardenas MB, Chaudhary K, Cygan RT, Deng W, Dewers T (2014) Chemical and hydrodynamic mechanisms for long-term geological carbon storage. J Phys Chem C 118(28):15103–15113

    Article  CAS  Google Scholar 

  • Aminu MD, Nabavi SA, Rochelle CA, Manovic V (2017) A review of developments in carbon dioxide storage. Appl Energy 208:1389–1419

    Article  CAS  Google Scholar 

  • Amir Rashidi MR, Peter Dabbi E, Azahree AI, Abu Bakar ZA, Tan Jen Huang D, Pedersen CK, Tiwari P, Sallehud-Din MT, Shamsudin MA, Hamid MK (2022) In CO2 Leakage marine dispersion modelling for an offshore depleted gas field for co2 storage, offshore technology conference Asia, OTC, p D041S033R003

  • An S, Erfani H, Hellevang H, Niasar V (2021) Lattice-Boltzmann simulation of dissolution of carbonate rock during CO2-saturated brine injection. Chem Eng J 408:127235

    Article  CAS  Google Scholar 

  • Ansaloni L, Alcock B, Peters TA (2020) Effects of CO2 on polymeric materials in the CO2 transport chain: a review. Int J Greenh Gas Control 94:102930

    Article  CAS  Google Scholar 

  • Anwar A, Sharif A, Fatima S, Ahmad P, Sinha A, Khan SAR, Jermsittiparsert K (2021) The asymmetric effect of public private partnership investment on transport CO2 emission in China: evidence from quantile ARDL approach. J Clean Prod 288:125282

    Article  Google Scholar 

  • Appriou D, Bonneville A, Zhou Q, Gasperikova E (2020) Time-lapse gravity monitoring of CO2 migration based on numerical modeling of a faulted storage complex. Int J Greenh Gas Control 95:102956

    Article  CAS  Google Scholar 

  • Ashworth P, Bradbury J, Wade S, Feenstra CY, Greenberg S, Hund G, Mikunda T (2012) What’s in store: lessons from implementing CCS. Int J Greenh Gas Control 9:402–409

    Article  Google Scholar 

  • Aspelund A, Mølnvik M, De Koeijer G (2006) Ship transport of CO2: technical solutions and analysis of costs, energy utilization, exergy efficiency and CO2 emissions. Chem Eng Res Des 84(9):847–855

    Article  CAS  Google Scholar 

  • Aursand P, Hammer M, Munkejord ST, Wilhelmsen Ø (2013) Pipeline transport of CO2 mixtures: models for transient simulation. Int J Greenh Gas Control 15:174–185

    Article  CAS  Google Scholar 

  • Babar M, Mukhtar A, Mubashir M, Saqib S, Ullah S, Quddusi AHA, Bustam MA, Show PL (2021) Development of a novel switched packed bed process for cryogenic CO2 capture from natural gas. Process Saf Environ Prot 147:878–887

    Article  CAS  Google Scholar 

  • Bachu S (2008) CO2 storage in geological media: Role, means, status and barriers to deployment. Prog Energy Combust Sci 34(2):254–273

    Article  CAS  Google Scholar 

  • Bachu S, Bonijoly D, Bradshaw J, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenh Gas Control 1(4):430–443

    Article  CAS  Google Scholar 

  • Bai B, Li X, Yuan Y (2013) A new cost estimate methodology for onshore pipeline transport of CO2 in China. Energy Procedia 37:7633–7638

    Article  Google Scholar 

  • Barta RB, Groll EA, Ziviani D (2021) Review of stationary and transport CO2 refrigeration and air conditioning technologies. Appl Therm Eng 185:116422

    Article  CAS  Google Scholar 

  • Battaglia P, Buffo G, Ferrero D, Santarelli M, Lanzini A (2021) Methanol synthesis through CO2 capture and hydrogenation: thermal integration, energy performance and techno-economic assessment. J Util 44:101407

    Article  CAS  Google Scholar 

  • Ben-Mansour R, Habib M, Bamidele O, Basha M, Qasem N, Peedikakkal A, Laoui T, Ali M (2016) Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—a review. Appl Energy 161:225–255

    Article  CAS  Google Scholar 

  • Beuttler C, Charles L, Wurzbacher J (2019) The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions. Front Climate 1:10

    Article  Google Scholar 

  • Biniek K, Henderson K, Rogers M, Santoni G (2020) Driving CO2 emissions to zero (and beyond) with carbon capture, use, and storage. McKinsey Q

  • Boait F, White N, Bickle M, Chadwick R, Neufeld J, Huppert H (2012) Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea. J Geophys Res Solid Earth 117(B3):B03309

    Article  Google Scholar 

  • Bos M, Kersten S, Brilman D (2020) Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture. Appl Energy 264:114672

    Article  CAS  Google Scholar 

  • Brilman W (2020) CO2 removal from air. In: Advances in carbon capture. Elsevier, pp 523–543

  • Buddin MS, Ahmad A (2021) A review on metal-organic frameworks as filler in mixed matrix membrane: recent strategies to surpass upper bound for CO2 separation. J CO2 Util 51:101616

    Article  Google Scholar 

  • Buscheck TA, Sun Y, Chen M, Hao Y, Wolery TJ, Bourcier WL, Court B, Celia MA, Friedmann SJ, Aines RD (2012) Active CO2 reservoir management for carbon storage: analysis of operational strategies to relieve pressure buildup and improve injectivity. Int J Greenh Gas Control 6:230–245

    Article  CAS  Google Scholar 

  • Caesary D, Song SY, Yu H, Kim B, Nam MJ (2020) A review on CO2 leakage detection in shallow subsurface using geophysical surveys. Int J Greenh Gas Control 102:103165

    Article  CAS  Google Scholar 

  • Calamita E, Siviglia A, Gettel GM, Franca MJ, Winton RS, Teodoru CR, Schmid M, Wehrli B (2021) Unaccounted CO2 leaks downstream of a large tropical hydroelectric reservoir. Proc Natl Acad Sci 118(25):e2026004118

    Article  CAS  Google Scholar 

  • Cao B, Yu Q (2022) Comparing the adsorption of carbon dioxide and methane in Carboniferous shale from the Qaidam Basin, China. Appl Geochem 143:105368

    Article  CAS  Google Scholar 

  • Cao X, Wang Z, Qiao Z, Zhao S, Wang J (2019) Penetrated COF channels: amino environment and suitable size for CO2 preferential adsorption and transport in mixed matrix membranes. ACS Appl Mater Interfaces 11(5):5306–5315

    Article  CAS  Google Scholar 

  • Cao G, Bai Y, Chen X, Nan X, Cheng Q, Sui Y, Wang Z (2021) Hydrate prevention based on convection and diffusion in alternate injection wells of carbon dioxide and water. Case Stud Therm Eng 24:100858

    Article  Google Scholar 

  • Cao Y, Rehman ZU, Ghasem N, Al-Marzouqi M, Abdullatif N, Nakhjiri AT, Ghadiri M, Rezakazemi M, Marjani A, Pishnamazi M (2021) Intensification of CO2 absorption using MDEA-based nanofluid in a hollow fibre membrane contactor. Sci Rep 11(1):1–12

    Google Scholar 

  • Cao F, Eskin D, Leonenko Y (2021) Modeling of carbon dioxide dissolution in an injection well for geologic sequestration in aquifers. Energy 221:119780

    Article  CAS  Google Scholar 

  • Cao M, Zhao L, Xu D, Parsley D, Ciora R, Liu PK, Manousiouthakis VI, Tsotsis TT (2021) A reactive separation process for pre-combustion CO2 capture employing oxygen-blown coal gasifier off-gas. Chem Eng J 420:127694

    Article  CAS  Google Scholar 

  • Carminati HB, de Medeiros JL, Ofélia de Queiroz FA (2021) Sustainable gas-to-wire via dry reforming of carbonated natural gas: Ionic-liquid pre-combustion capture and thermodynamic efficiency. Renew Sustain Energy Rev 151:111534

    Article  CAS  Google Scholar 

  • Celia MA, Nordbotten JM, Court B, Dobossy M, Bachu S (2011) Field-scale application of a semi-analytical model for estimation of CO2 and brine leakage along old wells. Int J Greenh Gas Control 5(2):257–269

    Article  CAS  Google Scholar 

  • Chai SYW, Ngu LH, How BS (2022) Review of carbon capture absorbents for CO2 utilization. Greenh Gases Sci Technol 12(3):394–427

    Article  CAS  Google Scholar 

  • Chao C, Deng Y, Dewil R, Baeyens J, Fan X (2021) Post-combustion carbon capture. Renew Sustain Energy Rev 138:110490

    Article  CAS  Google Scholar 

  • Chauvy R, De Weireld G (2020) CO2 utilization technologies in Europe: a short review. Energy Technol 8(12):2000627

    Article  Google Scholar 

  • Checkai DA (2012) Estimating permeability distribution of leakage pathways along existing wellbores

  • Chen H, Wang C, Ye M (2016) An uncertainty analysis of subsidy for carbon capture and storage (CCS) retrofitting investment in China’s coal power plants using a real-options approach. J Clean Prod 137:200–212

    Article  Google Scholar 

  • Chen L, Zuo L, Jiang Z, Jiang S, Liu K, Tan J, Zhang L (2019) Mechanisms of shale gas adsorption: evidence from thermodynamics and kinetics study of methane adsorption on shale. Chem Eng J 361:559–570

    Article  CAS  Google Scholar 

  • Chen H, Chen K, Yang M, Xu P (2020) A fractal capillary model for multiphase flow in porous media with hysteresis effect. Int J Multiph Flow 125:103208

    Article  CAS  Google Scholar 

  • Chen X, Liu Y, Wang Q, Lv J, Wen J, Chen X, Kang C, Cheng S, McElroy MB (2021) Pathway toward carbon-neutral electrical systems in China by mid-century with negative CO2 abatement costs informed by high-resolution modeling. Joule 5(10):2715–2741

    Article  CAS  Google Scholar 

  • Chen J, Qin M, Ma S, Fan R, Zheng X, Mao S, Chen C, Wang Y (2021) Rational construction of Pt/PtTex interface with optimal intermediate adsorption energy for efficient hydrogen evolution reaction. Appl Catal B 299:120640

    Article  CAS  Google Scholar 

  • Chen Y, Cann D, Jia J, Font-Palma C (2022) Preliminary study of CO2 frost formation during cryogenic carbon capture using tomography analysis. Fuel 328:125271

    Article  CAS  Google Scholar 

  • Chen X, Sun P, Cui L, Xu W, Dong Y (2022) Limestone-based dual-loop wet flue gas desulfurization under oxygen-enriched combustion. Fuel 322:124161

    Article  CAS  Google Scholar 

  • Chen M, Al-Maktoumi A, Izady A (2022) Assessment of integrated CO2 geologic storage and geothermal harvest in a semi-closed thin reservoir. Sustain Energy Technol Assess 49:101773

    Google Scholar 

  • Chen S, Liu J, Zhang Q, Teng F, McLellan BC (2022) A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew Sustain Energy Rev 167:112537

    Article  CAS  Google Scholar 

  • Choi B-K, Kim S-M, Kim K-M, Lee U, Choi JH, Lee J-S, Baek IH, Nam SC, Moon J-H (2021) Amine blending optimization for maximizing CO2 absorption capacity in a diisopropanolamine–methyldiethanolamine–H2O system using the electrolyte UNIQUAC model. Chem Eng J 419:129517

    Article  CAS  Google Scholar 

  • Choi S, Drese J, Eisenberger P, Jones C (2009) In A new paradigm of anthropogenic CO2 reduction: adsorptive fixation of CO2 from the ambient air as a carbon negative technology, AIChE Annual Meeting, Nashville, TN

  • Cihan A, Birkholzer JT, Bianchi M (2015) Optimal well placement and brine extraction for pressure management during CO2 sequestration. Int J Greenh Gas Control 42:175–187

    Article  CAS  Google Scholar 

  • Cole IS, Corrigan P, Sim S, Birbilis N (2011) Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem? Int J Greenh Gas Control 5(4):749–756

    Article  CAS  Google Scholar 

  • Collie GJ, Nazeri M, Jahanbakhsh A, Lin CW, Maroto-Valer MM (2017) Review of flowmeters for carbon dioxide transport in CCS applications. Greenh Gases Sci Technol 7(1):10–28

    Article  CAS  Google Scholar 

  • Compernolle T, Welkenhuysen K, Huisman K, Piessens K, Kort P (2017) Off-shore enhanced oil recovery in the North Sea: the impact of price uncertainty on the investment decisions. Energy Policy 101:123–137

    Article  CAS  Google Scholar 

  • Creutzig F, Breyer C, Hilaire J, Minx J, Peters GP, Socolow R (2019) The mutual dependence of negative emission technologies and energy systems. Energy Environ Sci 12(6):1805–1817

    Article  CAS  Google Scholar 

  • Cui G, Yang Z, Liu J, Li Z (2019) A comprehensive review of metal corrosion in a supercritical CO2 environment. Int J Greenh Gas Control 90:102814

    Article  CAS  Google Scholar 

  • Cui G, Zhu L, Zhou Q, Ren S, Wang J (2021) Geochemical reactions and their effect on CO2 storage efficiency during the whole process of CO2 EOR and subsequent storage. Int J Greenh Gas Control 108:103335

    Article  CAS  Google Scholar 

  • Cui RY, Hultman N, Cui D-Y, Mcjeon H, Clarke L, Yuan J-H, Cai W-J (2022) A US-China coal power transition and the global 1.5 C pathway. Adv Clim Change Res 13(2):179–186

    Article  Google Scholar 

  • Custelcean R (2021) Direct air capture of CO 2 via crystal engineering. Chem Sci 12(38):12518–12528

    Article  Google Scholar 

  • d’Amore F, Lovisotto L, Bezzo F (2020) Introducing social acceptance into the design of CCS supply chains: a case study at a European level. J Clean Prod 249:119337

    Article  Google Scholar 

  • Dahowski RT, Davidson CL, Li X, Wei N (2012) A $70/tCO2 greenhouse gas mitigation backstop for China’s industrial and electric power sectors: insights from a comprehensive CCS cost curve. Int J Greenh Gas Control 11:73–85

    Article  Google Scholar 

  • Dai X, Tian S, He Y, Lu Y, Wang G (2021) Methane/carbon dioxide adsorption and diffusion performances at different mineral compositions and buried depth conditions. Energy Fuels 35(19):15567–15578

    Article  CAS  Google Scholar 

  • Dalkhaa C, Jiang T, Burton-Kelly ME, Scharenberg M, Smith V, Walker JL, Duguid A, Heinrichs MR, Bosshart NW, Sorensen JA (2022) A simulation study of carbon storage with active reservoir management. Greenh Gases Sci Technol 12(1):4–23

    Article  CAS  Google Scholar 

  • Damen K, Faaij A, Turkenburg W (2006) Health, safety and environmental risks of underground CO2 storage—overview of mechanisms and current knowledge. Clim Change 74(1):289–318

    Article  CAS  Google Scholar 

  • Das AK, Hassanzadeh H (2021) A semi‐analytical solution to evaluate the spatiotemporal behavior of diffusive pressure plume and leakage from geological storage sites. Water Resour Res 57(7):e2021WR030366

  • De Guido G, Pellegrini LA (2022) Calculation of solid-vapor equilibria for cryogenic carbon capture. Comput Chem Eng 156:107569

    Article  Google Scholar 

  • Dean M, Tucker O (2017) A risk-based framework for Measurement, Monitoring and Verification (MMV) of the Goldeneye storage complex for the Peterhead CCS project, UK. Int J Greenh Gas Control 61:1–15

    Article  Google Scholar 

  • Dean M, Blackford J, Connelly D, Hines R (2020) Insights and guidance for offshore CO2 storage monitoring based on the QICS, ETI MMV, and STEMM-CCS projects. Int J Greenh Gas Control 100:103120

    Article  CAS  Google Scholar 

  • Deutz S, Bardow A (2021) Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat Energy 6(2):203–213

    Article  CAS  Google Scholar 

  • Dhoke C, Zaabout A, Cloete S, Amini S (2021) Review on reactor configurations for adsorption-based CO2 capture. Ind Eng Chem Res 60(10):3779–3798

    Article  CAS  Google Scholar 

  • Dods MN, Kim EJ, Long JR, Weston SC (2021) Deep CCS: moving beyond 90% carbon dioxide capture. Environ Sci Technol 55(13):8524–8534

    Article  CAS  Google Scholar 

  • Dongjie Z, Zhe W, Jining S, Lili Z, Zheng L (2012) Economic evaluation of CO2 pipeline transport in China. Energy Convers Manag 55:127–135

    Article  Google Scholar 

  • Dunstan MT, Donat F, Bork AH, Grey CP, Müller CR (2021) CO2 capture at medium to high temperature using solid oxide-based sorbents: Fundamental aspects, mechanistic insights, and recent advances. Chem Rev 121(20):12681–12745

    Article  CAS  Google Scholar 

  • Durmaz T (2018) The economics of CCS: Why have CCS technologies not had an international breakthrough? Renew Sustain Energy Rev 95:328–340

    Article  Google Scholar 

  • Eccles J, Pratson LF, Chandel MK (2012) Effects of well spacing on geological storage site distribution costs and surface footprint. Environ Sci Technol 46(8):4649–4656

    Article  CAS  Google Scholar 

  • Edge P, Gharebaghi M, Irons R, Porter R, Porter R, Pourkashanian M, Smith D, Stephenson P, Williams A (2011) Combustion modelling opportunities and challenges for oxy-coal carbon capture technology. Chem Eng Res Des 89(9):1470–1493

    Article  CAS  Google Scholar 

  • Edwards RW, Celia MA (2018) Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States. Proc Natl Acad Sci 115(38):E8815–E8824

    Article  CAS  Google Scholar 

  • El Hachem K, Kang M (2022) Methane and hydrogen sulfide emissions from abandoned, active, and marginally producing oil and gas wells in Ontario, Canada. Sci Total Environ 823:153491

    Article  Google Scholar 

  • Elkady M, Abdelaziz GB, Sharshir SW, Mohamed AY, Elsaid AM, El-Said EM, Mohamed SM, Abdelgaied M, Kabeel A (2022) Non-Darcian immiscible two-phase flow through porous materials (Darcy–Forchheimer–Brinkman Model). Therm Sci Eng Prog 29:101204

    Article  CAS  Google Scholar 

  • El-Maghraby RM, Blunt MJ (2013) Residual CO2 trapping in Indiana limestone. Environ Sci Technol 47(1):227–233

    Article  CAS  Google Scholar 

  • Esposito M, Martinez-Cabanas M, Connelly DP, Jasinski D, Linke P, Schmidt M, Achterberg EP (2021) Water column baseline assessment for offshore Carbon Dioxide Capture and Storage (CCS) sites: analysis of field data from the Goldeneye storage complex area. Int J Greenh Gas Control 109:103344

    Article  CAS  Google Scholar 

  • Etzold BJ, Krewer U, Thiele S, Dreizler A, Klemm E, Turek T (2021) Understanding the activity transport nexus in water and CO2 electrolysis: state of the art, challenges and perspectives. Chem Eng J 424:130501

    Article  CAS  Google Scholar 

  • Fagorite V, Onyekuru S, Opara A, Oguzie E (2022) The major techniques, advantages, and pitfalls of various methods used in geological carbon sequestration. Int J Environ Sci Technol 1–30

  • Fan Z, Friedmann SJ (2021) Low-carbon production of iron and steel: technology options, economic assessment, and policy. Joule 5(4):829–862

    Article  CAS  Google Scholar 

  • Fan J-L, Xu M, Wei S-J, Zhong P, Zhang X, Yang Y, Wang H (2018) Evaluating the effect of a subsidy policy on carbon capture and storage (CCS) investment decision-making in China—a perspective based on the 45Q tax credit. Energy Procedia 154:22–28

    Article  Google Scholar 

  • Fan J-L, Xu M, Yang L, Zhang X (2019) Benefit evaluation of investment in CCS retrofitting of coal-fired power plants and PV power plants in China based on real options. Renew Sustain Energy Rev 115:109350

    Article  Google Scholar 

  • Fan J-L, Wei S, Yang L, Wang H, Zhong P, Zhang X (2019) Comparison of the LCOE between coal-fired power plants with CCS and main low-carbon generation technologies: evidence from China. Energy 176:143–155

    Article  Google Scholar 

  • Fan J-L, Shen S, Wei S-J, Xu M, Zhang X (2020) Near-term CO2 storage potential for coal-fired power plants in China: a county-level source-sink matching assessment. Appl Energy 279:115878

    Article  CAS  Google Scholar 

  • Fan J-L, Wei S, Shen S, Xu M, Zhang X (2021) Geological storage potential of CO2 emissions for China’s coal-fired power plants: A city-level analysis. Int J Greenh Gas Control 106:103278

    Article  CAS  Google Scholar 

  • Farajzadeh R, Zitha PL, Bruining J (2009) Enhanced mass transfer of CO2 into water: experiment and modeling. Ind Eng Chem Res 48(13):6423–6431

    Article  CAS  Google Scholar 

  • Farhadian A, Zhao Y, Naeiji P, Rahimi A, Berisha A, Zhang L, Rizi ZT, Iravani D, Zhao J (2023) Simultaneous inhibition of natural gas hydrate formation and CO2/H2S corrosion for flow assurance inside the oil and gas pipelines. Energy 269:126797

    Article  CAS  Google Scholar 

  • Farmahini AH, Friedrich D, Brandani S, Sarkisov L (2020) Exploring new sources of efficiency in process-driven materials screening for post-combustion carbon capture. Energy Environ Sci 13(3):1018–1037

    Article  Google Scholar 

  • Fasihi M, Efimova O, Breyer C (2019) Techno-economic assessment of CO2 direct air capture plants. J Clean Prod 224:957–980

    Article  CAS  Google Scholar 

  • Fatah A, Mahmud HB, Bennour Z, Gholami R, Hossain M (2022) Geochemical modelling of CO2 interactions with shale: kinetics of mineral dissolution and precipitation on geological time scales. Chem Geol 592:120742

    Article  CAS  Google Scholar 

  • Fawad M, Mondol NH (2021) Monitoring geological storage of CO2: a new approach. Sci Rep 11(1):1–9

    Article  Google Scholar 

  • Fawad M, Mondol NH (2022) Monitoring geological storage of CO2 using a new rock physics model. Sci Rep 12(1):297

    Article  CAS  Google Scholar 

  • Folger PF (2017) Carbon capture and sequestration (CCS) in the United States. Congressional Research Service

  • Font-Palma C, Cann D, Udemu C (2021) Review of cryogenic carbon capture innovations and their potential applications. C 7(3):58

    CAS  Google Scholar 

  • Fu L, Ren Z, Si W, Ma Q, Huang W, Liao K, Huang Z, Wang Y, Li J, Xu P (2022) Research progress on CO2 capture and utilization technology. J CO2 Util 66:102260

    Article  CAS  Google Scholar 

  • Fukai I, Mishra S, Moody MA (2016) Economic analysis of CO2-enhanced oil recovery in Ohio: implications for carbon capture, utilization, and storage in the Appalachian Basin region. Int J Greenh Gas Control 52:357–377

    Article  CAS  Google Scholar 

  • Gao L, Fang M, Li H, Hetland J (2011) Cost analysis of CO2 transportation: case study in China. Energy Procedia 4:5974–5981

    Article  Google Scholar 

  • Garcia S, Fernandez ES, Stewart AJ, Maroto-Valer MM (2017) Process integration of post-combustion CO2 capture with Li4SiO4/Li2CO3 looping in a NGCC plant. Energy Procedia 114:2611–2617

    Article  CAS  Google Scholar 

  • GCCSI (2021) Carbon capture and storage images. Global CCS Institute. https://www.globalccsinstitute.com/resources/ccs-image-library/

  • GCCSI (2021) Global carbon capture and storage status 2021. Global CCS Institute

  • Ge J, Zhang X, Le-Hussain F (2022) Fines migration and mineral reactions as a mechanism for CO2 residual trapping during CO2 sequestration. Energy 239:122233

    Article  CAS  Google Scholar 

  • Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45(20):9101–9108

    Article  CAS  Google Scholar 

  • Geske J (2015) CCS Transportation infrastructures: technologies, costs, and regulation. Carbon Capture, Storage and Use: Technical, Economic, Environmental and Societal Perspectives 183–199

  • Gholami R, Raza A, Iglauer S (2021) Leakage risk assessment of a CO2 storage site: a review. Earth Sci Rev 223:103849

    Article  CAS  Google Scholar 

  • Gilfillan SM, Lollar BS, Holland G, Blagburn D, Stevens S, Schoell M, Cassidy M, Ding Z, Zhou Z, Lacrampe-Couloume G (2009) Solubility trapping in formation water as dominant CO 2 sink in natural gas fields. Nature 458(7238):614–618

    Article  CAS  Google Scholar 

  • Godec M, Kuuskraa V, Van Leeuwen T, Melzer LS, Wildgust N (2011) CO2 storage in depleted oil fields: the worldwide potential for carbon dioxide enhanced oil recovery. Energy Procedia 4:2162–2169

    Article  Google Scholar 

  • Godil DI, Yu Z, Sharif A, Usman R, Khan SAR (2021) Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: a path toward sustainable development. Sustain Dev 29(4):694–707

    Article  Google Scholar 

  • Grant N, Gambhir A, Mittal S, Greig C, Köberle AC (2022) Enhancing the realism of decarbonisation scenarios with practicable regional constraints on CO2 storage capacity. Int J Greenh Gas Control 120:103766

    Article  CAS  Google Scholar 

  • Grasa GS, Abanades JC, Alonso M, González B (2008) Reactivity of highly cycled particles of CaO in a carbonation/calcination loop. Chem Eng J 137(3):561–567

    Article  CAS  Google Scholar 

  • Graziani S, Beaubien SE, Ciotoli G, Bigi S (2022) Development and testing of a rapid, sensitive, high-resolution tool to improve mapping of CO2 leakage at the ground surface. Appl Geochem 145:105424

    Article  CAS  Google Scholar 

  • Gu S, Li Y, Teng L, Wang C, Hu Q, Zhang D, Ye X, Wang J, Iglauer S (2019) An experimental study on the flow characteristics during the leakage of high pressure CO2 pipelines. Process Saf Environ Prot 125:92–101

    Article  CAS  Google Scholar 

  • Guo W, Hu Z, Zhang X, Yu R, Wang L (2017) Shale gas adsorption and desorption characteristics and its effects on shale permeability. Energy Explor Exploit 35(4):463–481

    Article  CAS  Google Scholar 

  • Gupta PK, Yadav B (2020) Leakage of CO 2 from geological storage and its impacts on fresh soil–water systems: a review. Environ Sci Pollut Res 27:12995–13018

    Article  CAS  Google Scholar 

  • Gurkan BE, de la Fuente JC, Mindrup EM, Ficke LE, Goodrich BF, Price EA, Schneider WF, Brennecke JF (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132(7):2116–2117

    Article  CAS  Google Scholar 

  • Hammond GP, Akwe S, Williams S (2011) Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage. Energy Oxford

  • Hamza A, Hussein IA, Al-Marri MJ, Mahmoud M, Shawabkeh R, Aparicio S (2021) CO2 enhanced gas recovery and sequestration in depleted gas reservoirs: a review. J Petrol Sci Eng 196:107685

    Article  CAS  Google Scholar 

  • Han Y, Ho WW (2021) Polymeric membranes for CO2 separation and capture. J Membr Sci 628:119244

    Article  CAS  Google Scholar 

  • Han WS, McPherson BJ (2009) Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs. Energy Convers Manag 50(10):2570–2582

    Article  CAS  Google Scholar 

  • Handogo R, Mualim A, Sutikno JP, Altway A (2022) Evaluation of CO2 transport design via pipeline in the CCS system with various distance combinations. ECS Trans 107(1):8593

    Article  Google Scholar 

  • Hasan MF, First EL, Boukouvala F, Floudas CA (2015) A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput Chem Eng 81:2–21

    Article  CAS  Google Scholar 

  • He X, Zhu W, Santoso R, Alsinan M, Kwak H, Hoteit H (2021) In CO2 leakage rate forecasting using optimized deep learning, SPE annual technical conference and exhibition, OnePetro

  • Heddle G, Herzog H, Klett M (2003) The economics of CO2 storage. Massachusetts Institute of Technology, Laboratory for Energy and the Environment

  • Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, Mac Dowell N, Minx JC, Smith P, Williams CK (2019) The technological and economic prospects for CO2 utilization and removal. Nature 575(7781):87–97

    Article  CAS  Google Scholar 

  • Hesse MA, Orr FM, Tchelepi H (2008) Gravity currents with residual trapping. J Fluid Mech 611:35–60

    Article  CAS  Google Scholar 

  • Hill LB, Li X, Wei N (2020) CO2-EOR in China: a comparative review. Int J Greenh Gas Control 103:103173

    Article  CAS  Google Scholar 

  • Hong Y, Xisen Z, Yulong K, Longlong C, Chunxia H, Hong W (2019) Evaluation on the suitability and potential of co2 geological storage in Ordos Basin. Adv Clim Change Res 15(1):95

    Google Scholar 

  • Hong WY (2022) A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci Technol 100044

  • Hongjun Y, Shuanshi F, Xuemei L, Yanhong W, Jianghua N (2011) Economic comparison of three gas separation technologies for CO2 capture from power plant flue gas. Chin J Chem Eng 19(4):615–620

    Article  Google Scholar 

  • Houdu E, Poupard O, Meyer V (2008) Supercritical CO2 leakage modelling for well integrity in geological storage project. In: Proceedings of the COMSOL conference 2008

  • Hu B, Zhai H (2017) The cost of carbon capture and storage for coal-fired power plants in China. Int J Greenh Gas Control 65:23–31

    Article  Google Scholar 

  • Hu Y, Liu W, Yang Y, Qu M, Li H (2019) CO2 capture by Li4SiO4 sorbents and their applications: current developments and new trends. Chem Eng J 359:604–625

    Article  CAS  Google Scholar 

  • Hu C-C, Cheng P-H, Chou S-C, Lai C-L, Huang S-H, Tsai H-A, Hung W-S, Lee K-R (2020) Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix membranes for gas separation. J Membr Sci 595:117542

    Article  CAS  Google Scholar 

  • Hu H, Dong W, Zhou Q (2021) A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: analysis based on the computable general equilibrium model. Energy Policy 156:112460

    Article  CAS  Google Scholar 

  • Huang L, Liao Q, Yan J, Liang Y, Zhang H (2021) Carbon footprint of oil products pipeline transportation. Sci Total Environ 783:146906

    Article  CAS  Google Scholar 

  • Ide ST, Jessen K, Orr FM Jr (2007) Storage of CO2 in saline aquifers: Effects of gravity, viscous, and capillary forces on amount and timing of trapping. Int J Greenh Gas Control 1(4):481–491

    Article  CAS  Google Scholar 

  • Ishimoto Y, Sugiyama M, Kato E, Moriyama R, Tsuzuki K, Kurosawa A (2017) Putting costs of direct air capture in context

  • Jaiganesh N, Kuo P-C, Woudstra T, Ajith Kumar R, Aravind P (2022) Negative emission power plants: thermodynamic modeling and evaluation of a biomass-based integrated gasification solid oxide fuel cell/gas turbine system for power, heat, and biochar co-production—part 1. Front Energy Res 10:803756

    Article  Google Scholar 

  • Jang GG, Thompson JA, Sun X, Tsouris C (2021) Process intensification of CO2 capture by low-aqueous solvent. Chem Eng J 426:131240

    Article  CAS  Google Scholar 

  • Jarvis SM, Samsatli S (2018) Technologies and infrastructures underpinning future CO2 value chains: a comprehensive review and comparative analysis. Renew Sustain Energy Rev 85:46–68

    Article  CAS  Google Scholar 

  • Jayasekara D, Ranjith P, Wanniarachchi W, Rathnaweera T (2020) Understanding the chemico-mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: a review study. J Supercrit Fluids 161:104819

    Article  CAS  Google Scholar 

  • Jeon PR, Lee C-H (2021) Reaction of drilled-cores from the Janggi basin with CO2-saturated brine from subcritical to supercritical condition of CO2: implications on sequestration of dissolved CO2. J Natl Gas Sci Eng 88:103804

    Article  CAS  Google Scholar 

  • Jeong J, Park E, Han WS, Kim K-Y, Yun S-T (2019) Feasibility study to optimize a near-surface sensor network design for improving detectability of CO2 leakage at a geologic storage site. J Hydrol 572:32–39

    Article  CAS  Google Scholar 

  • Jeong J, Jeen S-W, Hwang H-T, Lee K-K (2020) Changes in geochemical composition of groundwater due to CO2 leakage in various geological Media. Water 12(9):2597

    Article  CAS  Google Scholar 

  • Jia B, Tsau J-S, Barati R (2019) A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 236:404–427

    Article  CAS  Google Scholar 

  • Jia B, Chen Z, Xian C (2022) Investigations of CO2 storage capacity and flow behavior in shale formation. J Petrol Sci Eng 208:109659

    Article  CAS  Google Scholar 

  • Jiang S, Li Y, Wang F, Sun H, Wang H, Yao Z (2022) A state-of-the-art review of CO2 enhanced oil recovery as a promising technology to achieve carbon neutrality in China. Environ Res 210:112986

    Article  CAS  Google Scholar 

  • Jin Y, Scherer L, Sutanudjaja EH, Tukker A, Behrens P (2022) Climate change and CCS increase the water vulnerability of China’s thermoelectric power fleet. Energy 245:123339

    Article  CAS  Google Scholar 

  • Jiutian Z, Zhiyong W, Jia-Ning K, Xiangjing S, Dong X (2022) Several key issues for CCUS development in China targeting carbon neutrality. Carbon Neutral 1(1):1–20

    Article  Google Scholar 

  • Ju Y, Györe D, Gilfillan SM, Lee S-S, Cho I, Ha S-W, Joun W-T, Kang H-J, Do H-K, Kaown D (2022) Constraining the effectiveness of inherent tracers of captured CO2 for tracing CO2 leakage: demonstration in a controlled release site. Sci Total Environ 824:153835

    Article  CAS  Google Scholar 

  • Juanes R, Spiteri E, Orr F Jr, Blunt M (2006) Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res 42(12):W12418

    Article  Google Scholar 

  • Jung J-Y, Huh C, Kang S-G, Seo Y, Chang D (2013) CO2 transport strategy and its cost estimation for the offshore CCS in Korea. Appl Energy 111:1054–1060

    Article  CAS  Google Scholar 

  • Kang K, Huh C, Kang S-G, Baek J-H, Noh HJ (2014) Estimation of CO2 pipeline transport cost in South Korea based on the scenarios. Energy Procedia 63:2475–2480

    Article  CAS  Google Scholar 

  • Kapetaki Z, Hetland J, Le Guenan T, Mikunda T, Scowcroft J (2017) Highlights and lessons from the EU CCS demonstration project network. Energy Procedia 114:5562–5569

    Article  CAS  Google Scholar 

  • Kappelt N, Russell HS, Kwiatkowski S, Afshari A, Johnson MS (2021) Correlation of respiratory aerosols and metabolic carbon dioxide. Sustainability 13(21):12203

    Article  CAS  Google Scholar 

  • Kárászová M, Zach B, Petrusová Z, Červenka V, Bobák M, Šyc M, Izák P (2020) Post-combustion carbon capture by membrane separation. Rev Sep Purif Technol 238:116448

    Article  Google Scholar 

  • Karayannis V, Charalampides G, Lakioti E (2014) Socio-economic aspects of CCS technologies. Procedia Econ Finance 14:295–302

    Article  Google Scholar 

  • Karvounis P, Blunt MJ (2021) Assessment of CO2 geological storage capacity of saline aquifers under the North Sea. Int J Greenh Gas Control 111:103463

    Article  CAS  Google Scholar 

  • Kearns J, Teletzke G, Palmer J, Thomann H, Kheshgi H, Chen Y-HH, Paltsev S, Herzog H (2017) Developing a consistent database for regional geologic CO2 storage capacity worldwide. Energy Procedia 114:4697–4709

    Article  CAS  Google Scholar 

  • Keith DW, Ha-Duong M, Stolaroff JK (2006) Climate strategy with CO 2 capture from the air. Clim Change 74(1):17–45

    Article  CAS  Google Scholar 

  • Keith DW, Holmes G, Angelo DS, Heidel K (2018) A process for capturing CO2 from the atmosphere. Joule 2(8):1573–1594

    Article  CAS  Google Scholar 

  • Keivani B, Gungor A (2022) Techno-economic assessment of coal and torrefied biomass co-combustion: a case study of oxy-combustion carbon capture power plants in Turkey. J CO2 Util 62:102103

    Article  CAS  Google Scholar 

  • Keshavarz L, Ghaani MR, MacElroy JD, English NJ (2021) A comprehensive review on the application of aerogels in CO2-adsorption: materials and characterisation. Chem Eng J 412:128604

    Article  CAS  Google Scholar 

  • Khallaghi N, Jeswani H, Hanak DP, Manovic V (2021) Techno-economic-environmental assessment of biomass oxy-gasification staged oxy-combustion for negative emission combined heat and power. Appl Therm Eng 196:117254

    Article  CAS  Google Scholar 

  • Khanal A, Shahriar MF (2022) Physics-based proxy modeling of CO2 sequestration in deep saline aquifers. Energies 15(12):4350

    Article  CAS  Google Scholar 

  • Kheirinik M, Ahmed S, Rahmanian N (2021) Comparative techno-economic analysis of carbon capture processes: pre-combustion, post-combustion, and oxy-fuel combustion operations. Sustainability 13(24):13567

    Article  CAS  Google Scholar 

  • Kheshgi H, de Coninck H, Kessels J (2012) Carbon dioxide capture and storage: seven years after the IPCC special report. Mitig Adapt Strat Glob Change 17(6):563–567

    Article  Google Scholar 

  • Khosa AA, Xu T, Xia B, Yan J, Zhao C (2019) Technological challenges and industrial applications of CaCO3/CaO based thermal energy storage system—a review. Sol Energy 193:618–636

    Article  CAS  Google Scholar 

  • Kim S, Lee SH, Kang YT (2017) Characteristics of CO2 hydrate formation/dissociation in H2O+ THF aqueous solution and estimation of CO2 emission reduction by district cooling application. Energy 120:362–373

    Article  CAS  Google Scholar 

  • Kiss T, Popovics S (2021) Evaluation on the effectiveness of energy policies—evidence from the carbon reductions in 25 countries. Renew Sustain Energy Rev 149:111348

    Article  Google Scholar 

  • Klewiah I, Berawala DS, Walker HCA, Andersen PØ, Nadeau PH (2020) Review of experimental sorption studies of CO2 and CH4 in shales. J Natl Gas Sci Eng 73:103045

    Article  CAS  Google Scholar 

  • Knoope M, Ramírez A, Faaij A (2013) A state-of-the-art review of techno-economic models predicting the costs of CO2 pipeline transport. Int J Greenh Gas Control 16:241–270

    Article  Google Scholar 

  • Knoope M, Guijt W, Ramírez A, Faaij A (2014) Improved cost models for optimizing CO2 pipeline configuration for point-to-point pipelines and simple networks. Int J Greenh Gas Control 22:25–46

    Article  Google Scholar 

  • Kosaka F, Liu Y, Chen S-Y, Mochizuki T, Takagi H, Urakawa A, Kuramoto K (2021) Enhanced activity of integrated CO2 capture and reduction to CH4 under pressurized conditions toward atmospheric CO2 utilization. ACS Sustain Chem Eng 9(9):3452–3463

    Article  CAS  Google Scholar 

  • Kou Z, Wang H, Alvarado V, McLaughlin JF, Quillinan SA (2021) Impact of sub-core scale heterogeneity on CO2/brine multiphase flow for geological carbon storage in the upper Minnelusa sandstones. J Hydrol 599:126481

    Article  CAS  Google Scholar 

  • Kumar S, Ojha K (2021) Reaction kinetic, maturity, burial and thermal histories modelling of cambay shale source rocks, Cambay Basin, Western India. J Petrol Sci Eng 202:108543

    Article  CAS  Google Scholar 

  • Kumar S, Foroozesh J, Edlmann K, Rezk MG, Lim CY (2020) A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers. J Natl Gas Sci Eng 81:103437

    Article  CAS  Google Scholar 

  • Kurnia JC, Shatri MS, Putra ZA, Zaini J, Caesarendra W, Sasmito AP (2022) Geothermal energy extraction using abandoned oil and gas wells: techno-economic and policy review. Int J Energy Res 46(1):28–60

    Article  CAS  Google Scholar 

  • Lashgari HR, Sun A, Zhang T, Pope GA, Lake LW (2019) Evaluation of carbon dioxide storage and miscible gas EOR in shale oil reservoirs. Fuel 241:1223–1235

    Article  CAS  Google Scholar 

  • Lasseux D, Valdés-Parada FJ (2022) A macroscopic model for immiscible two-phase flow in porous media. J Fluid Mech 944:A43

    Article  CAS  Google Scholar 

  • Lau HC, Ramakrishna S, Zhang K, Radhamani AV (2021) The role of carbon capture and storage in the energy transition. Energy Fuels 35(9):7364–7386

    Article  CAS  Google Scholar 

  • Le Reun T, Hewitt DR (2021) High-Rayleigh-number convection in porous–fluid layers. J Fluid Mech 920:A35

    Article  Google Scholar 

  • Lee JW, Kim S, Pineda IT, Kang YT (2021) Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria. Renew Sustain Energy Rev 138:110524

    Article  CAS  Google Scholar 

  • Lehtveer M, Emanuelsson A (2021) BECCS and DACCS as negative emission providers in an intermittent electricity system: why levelized cost of carbon may be a misleading measure for policy decisions. Front Clim 3:647276

    Article  Google Scholar 

  • Lei L, Bai L, Lindbråthen A, Pan F, Zhang X, He X (2020) Carbon membranes for CO2 removal: status and perspectives from materials to processes. Chem Eng J 401:126084

    Article  CAS  Google Scholar 

  • Leonzio G, Fennell PS, Shah N (2022) Analysis of technologies for carbon dioxide capture from the air. Appl Sci 12(16):8321

    Article  CAS  Google Scholar 

  • Li Q, Wei Y-N, Liu G, Shi H (2015) CO2-EWR: a cleaner solution for coal chemical industry in China. J Clean Prod 103:330–337

    Article  CAS  Google Scholar 

  • Li K, Zhou X, Tu R, Xie Q, Yi J, Jiang X (2016) An experimental investigation of supercritical CO2 accidental release from a pressurized pipeline. J Supercrit Fluids 107:298–306

    Article  CAS  Google Scholar 

  • Li J, Hou Y, Wang P, Yang B (2018) A review of carbon capture and storage project investment and operational decision-making based on bibliometrics. Energies 12(1):23

    Article  Google Scholar 

  • Li D, Zhang L, Ren S, Rui H (2019) Leakage mitigation during CO2 geological storage process using CO2 triggered gelation. Ind Eng Chem Res 58(8):3395–3406

    Article  CAS  Google Scholar 

  • Li H, Xie L, Ren L, He B, Liu Y, Liu J (2021) Influence of CO2–water–rock interactions on the fracture properties of sandstone from the Triassic Xujiahe Formation, Sichuan Basin. Acta Geophys 69(1):135–147

    Article  Google Scholar 

  • Li D, Peng S, Yang R, Zheng J, Cai Z, Zhang T, Zhang W (2022) Joint monitoring of CO2-ECBM based on multiple geophysical methods: a case study of Shizhuang Town, Shanxi Province, China. Int J Greenh Gas Control 121:103795

    Article  CAS  Google Scholar 

  • Li L, Wu M, Liu Y, Ding J, Abushaikha A (2022) Multiphase transient analysis of horizontal wells during CO2-EOR. J Petrol Sci Eng 210:109895

    Article  CAS  Google Scholar 

  • Li N, Mo L, Unluer C (2022) Emerging CO2 utilization technologies for construction materials: a review. J CO2 Util 65:102237

    Article  CAS  Google Scholar 

  • Li Q, Liu G (2016) Risk assessment of the geological storage of CO2: a review. Geol Carbon Sequestration 249–284

  • Li S, Zhiwei H (2021) Application of intelligent optimization techniques in CO2 geological storage and utilization (CGUS). In: IOP conference series: earth and environmental science. IOP Publishing, p 012147

  • Liang ZH, Rongwong W, Liu H, Fu K, Gao H, Cao F, Zhang R, Sema T, Henni A, Sumon K (2015) Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. Int J Greenh Gas Control 40:26–54

    Article  CAS  Google Scholar 

  • Lichtschlag A, Haeckel M, Olierook D, Peel K, Flohr A, Pearce CR, Marieni C, James RH, Connelly DP (2021) Impact of CO2 leakage from sub-seabed carbon dioxide storage on sediment and porewater geochemistry. Int J Greenh Gas Control 109:103352

    Article  CAS  Google Scholar 

  • Lichtschlag A, Pearce CR, Suominen M, Blackford J, Borisov SM, Bull JM, de Beer D, Dean M, Esposito M, Flohr A (2021) Suitability analysis and revised strategies for marine environmental carbon capture and storage (CCS) monitoring. Int J Greenh Gas Control 112:103510

    Article  CAS  Google Scholar 

  • Lin C-W, Nazeri M, Bhattacharji A, Spicer G, Maroto-Valer MM (2016) Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations. Appl Energy 165:759–764

    Article  CAS  Google Scholar 

  • Lin L, Meng Y, Ju T, Han S, Meng F, Li J, Du Y, Song M, Lan T, Jiang J (2023) Characteristics, application and modeling of solid amine adsorbents for CO2 capture: a review. J Environ Manag 325:116438

    Article  CAS  Google Scholar 

  • Lindeberg E, Wessel-Berg D (1997) Vertical convection in an aquifer column under a gas cap of CO2. Energy Convers Manag 38:S229–S234

    Article  CAS  Google Scholar 

  • Liu H, Gallagher KS (2011) Preparing to ramp up large-scale CCS demonstrations: an engineering-economic assessment of CO2 pipeline transportation in China. Int J Greenh Gas Control 5(4):798–804

    Article  CAS  Google Scholar 

  • Liu Y, Rui Z (2022) A storage-driven CO2 EOR for a net-zero emission target. Engineering 18:79–87

    Article  CAS  Google Scholar 

  • Liu X, Godbole A, Lu C, Michal G, Linton V (2019) Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies. Appl Energy 250:32–47

    Article  CAS  Google Scholar 

  • Liu RS, Shi XD, Wang CT, Gao YZ, Xu S, Hao GP, Chen S, Lu AH (2021) Advances in post-combustion CO2 capture by physical adsorption: from materials innovation to separation practice. Chemsuschem 14(6):1428–1471

    Article  CAS  Google Scholar 

  • Liu M, Hohenshil A, Gadikota G (2021) Integrated CO2 capture and removal via carbon mineralization with inherent regeneration of aqueous solvents. Energy Fuels 35(9):8051–8068

    Article  CAS  Google Scholar 

  • Liu Y, Meng Q, Zhou X, Lu J, Yan H, Chen X, Yang Q (2022) Enhancing the separation of produced gas and CO2 capture for enhanced oil recovery in China, multi-objective simulated optimization and quantitative assessment for sustainable development. J Clean Prod 380:135089

    Article  CAS  Google Scholar 

  • Liu Q, Zhu D, Jin Z, Tian H, Zhou B, Jiang P, Meng Q, Wu X, Xu H, Hu T (2023) Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs. Renew Sustain Energy Rev 171:113000

    Article  CAS  Google Scholar 

  • Loizzo M, Akemu O, Jammes L, Desroches J, Lombardi S, Annunziatellis A (2011) Quantifying the risk of CO2 leakage through wellbores. SPE Drill Complet 26(03):324–331

    Article  CAS  Google Scholar 

  • Lu H, Ma X, Huang K, Fu L, Azimi M (2020) Carbon dioxide transport via pipelines: a systematic review. J Clean Prod 266:121994

    Article  CAS  Google Scholar 

  • Lu Y, Sun L, Guan D, Yang L, Zhang L, Song Y, Zhao J (2022) Molecular behavior of CO2 hydrate growth in the presence of dissolvable ionic organics. Chem Eng J 428:131176

    Article  CAS  Google Scholar 

  • Luchang S, Zhengrong W, Chong W, Kailiang W, Shiming Z, Wenquan H (2021) Design and operation optimization of 10000 ton carbon capture project in coal fired power plants. Compr Smart Energy 43(6):69–78

    Google Scholar 

  • Luu K, Schoenball M, Oldenburg CM, Rutqvist J (2022) Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin. J Geophys Res Solid Earth 127(5):e2021JB023496

    Article  Google Scholar 

  • Ma Z, Zhang P, Bao H, Deng S (2016) Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method. Renew Sustain Energy Rev 53:1273–1302

    Article  CAS  Google Scholar 

  • Ma L, Fauchille A-L, Ansari H, Chandler M, Ashby P, Taylor K, Pini R, Lee PD (2021) Linking multi-scale 3D microstructure to potential enhanced natural gas recovery and subsurface CO 2 storage for Bowland shale. UK Energy Environ Sci 14(8):4481–4498

    Article  CAS  Google Scholar 

  • Ma Q, Wang X, Chen F, Wei L, Zhang D, Jin H (2021) Carbon sequestration of sand-fixing plantation of Haloxylon ammodendron in Shiyang River Basin: storage, rate and potential. Glob Ecol Conserv 28:e01607

    Article  Google Scholar 

  • Madhu K, Pauliuk S, Dhathri S, Creutzig F (2021) Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nat Energy 6(11):1035–1044

    Article  CAS  Google Scholar 

  • Mahmoodpour S, Singh M, Turan A, Bär K, Sass I (2022) Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir. Energy 247:123511

    Article  Google Scholar 

  • Mahmoud RMA, Dodds PE (2022) A technical evaluation to analyse of potential repurposing of submarine pipelines for hydrogen and CCS using survival analysis. Ocean Eng 266:112893

    Article  Google Scholar 

  • Mallapaty S (2020) How China could be carbon neutral by mid-century. Nature 586(7830):482–484

    Article  CAS  Google Scholar 

  • Man Y, Yang S, Xiang D, Li X, Qian Y (2014) Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture. J Clean Prod 71:59–66

    Article  CAS  Google Scholar 

  • Maqsood K, Ali A, Nasir R, Abdulrahman A, Mahfouz AB, Ahmed A, Shariff AB, Ganguly S, Mubashir M, Show PL (2021) Experimental and simulation study on high-pressure VLS cryogenic hybrid network for CO2 capture from highly sour natural gas. Process Saf Environ Prot 150:36–50

    Article  CAS  Google Scholar 

  • Marchese M, Buffo G, Santarelli M, Lanzini A (2021) CO2 from direct air capture as carbon feedstock for Fische–Tropsch chemicals and fuels: energy and economic analysis. J CO2 Util 46:101487

    Article  CAS  Google Scholar 

  • Martens S, Liebscher A, Möller F, Würdemann H, Schilling F, Kühn M, Group K (2011) Progress report on the first European on-shore CO2 storage site at Ketzin (Germany)—second year of injection. Energy Procedia 4:3246–3253

    Article  Google Scholar 

  • Martin-Roberts E, Scott V, Flude S, Johnson G, Haszeldine RS, Gilfillan S (2021) Carbon capture and storage at the end of a lost decade. One Earth 4(11):1569–1584

    Article  Google Scholar 

  • Martynov S, Daud N, Mahgerefteh H, Brown S, Porter R (2016) Impact of stream impurities on compressor power requirements for CO2 pipeline transportation. Int J Greenh Gas Control 54:652–661

    Article  CAS  Google Scholar 

  • Matter JM, Stute M, Snæbjörnsdottir SÓ, Oelkers EH, Gislason SR, Aradottir ES, Sigfusson B, Gunnarsson I, Sigurdardottir H, Gunnlaugsson E (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352(6291):1312–1314

    Article  CAS  Google Scholar 

  • Mazzoldi A, Hill T, Colls JJ (2011) Assessing the risk for CO2 transportation within CCS projects, CFD modelling. Int J Greenh Gas Control 5(4):816–825

    Article  CAS  Google Scholar 

  • McCoy ST, Rubin ES (2008) An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int J Greenh Gas Control 2(2):219–229

    Article  CAS  Google Scholar 

  • McCoy ST, Rubin ES (2009) The effect of high oil prices on EOR project economics. Energy Procedia 1(1):4143–4150

    Article  Google Scholar 

  • McQueen N, Psarras P, Pilorgé H, Liguori S, He J, Yuan M, Woodall CM, Kian K, Pierpoint L, Jurewicz J (2020) Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the United States. Environ Sci Technol 54(12):7542–7551

    Article  CAS  Google Scholar 

  • McQueen N, Gomes KV, McCormick C, Blumanthal K, Pisciotta M, Wilcox J (2021) A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog Energy 3(3):032001

    Article  Google Scholar 

  • Melara AJ, Singh U, Colosi LM (2020) Is aquatic bioenergy with carbon capture and storage a sustainable negative emission technology? Insights from a spatially explicit environmental life-cycle assessment. Energy Convers Manag 224:113300

    Article  CAS  Google Scholar 

  • Metz B, Davidson O, De Coninck H, Loos M, Meyer L (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge

    Google Scholar 

  • Metz B, Davidson O, De Coninck H (2005) Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press

  • Meyer V, Houdu E, Poupard O, le Gouevec J (2009) Quantitative risk evaluation related to long term CO2 gas leakage along wells. Energy Procedia 1(1):3595–3602

    Article  CAS  Google Scholar 

  • Miao M, Deng B, Kong H, Yang H, Lyu J, Jiang X, Zhang M (2021) Effects of volatile matter and oxygen concentration on combustion characteristics of coal in an oxygen-enriched fluidized bed. Energy 220:119778

    Article  CAS  Google Scholar 

  • Michaelides EE (2021) Thermodynamic analysis and power requirements of CO2 capture, transportation, and storage in the ocean. Energy 230:120804

    Article  CAS  Google Scholar 

  • Ming Z, Shaojie O, Yingjie Z, Hui S (2014) CCS technology development in China: Status, problems and countermeasures—based on SWOT analysis. Renew Sustain Energy Rev 39:604–616

    Article  CAS  Google Scholar 

  • Mintsop Nguela LJ, Bakari H, Fadimatou H, Christophe G, Michaud P (2021) Storage and upgrading of biogas by physicochemical purification in a Sudano-Sahelian context. Energies 14(18):5855

    Article  Google Scholar 

  • Miocic JM, Gilfillan SM, Frank N, Schroeder-Ritzrau A, Burnside NM, Haszeldine RS (2019) 420,000 year assessment of fault leakage rates shows geological carbon storage is secure. Sci Rep 9(1):769

    Article  Google Scholar 

  • Molari M, Guilini K, Lins L, Ramette A, Vanreusel A (2019) CO2 leakage can cause loss of benthic biodiversity in submarine sands. Mar Environ Res 144:213–229

    Article  CAS  Google Scholar 

  • Molina-Fernández C, Luis P (2021) Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: a review. J CO2 Util 47:101475

    Article  Google Scholar 

  • Muromachi S (2021) CO2 capture properties of semiclathrate hydrates formed with tetra-n-butylammonium and tetra-n-butylphosphonium salts from H2+ CO2 mixed gas. Energy 223:120015

    Article  CAS  Google Scholar 

  • Nakao S-I, Yogo K, Goto K, Kai T, Yamada H (2019) Advanced CO2 capture technologies: absorption, adsorption, and membrane separation methods. Springer, Berlin

    Book  Google Scholar 

  • Narita D, Klepper G (2016) Economic incentives for carbon dioxide storage under uncertainty: a real options analysis. Int J Greenh Gas Control 53:18–27

    Article  Google Scholar 

  • Nath AJ, Sileshi GW, Laskar SY, Pathak K, Reang D, Nath A, Das AK (2021) Quantifying carbon stocks and sequestration potential in agroforestry systems under divergent management scenarios relevant to India’s Nationally Determined Contribution. J Clean Prod 281:124831

    Article  CAS  Google Scholar 

  • Nguyen P, Carey JW, Viswanathan HS, Porter M (2018) Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments. Appl Energy 230:160–174

    Article  CAS  Google Scholar 

  • Ni H, Boon M, Garing C, Benson SM (2019) Predicting CO2 residual trapping ability based on experimental petrophysical properties for different sandstone types. Int J Greenh Gas Control 86:158–176

    Article  CAS  Google Scholar 

  • Niedermaier I, Bahlmann M, Papp C, Kolbeck C, Wei W, Krick Calderón S, Grabau M, Schulz PS, Wasserscheid P, Steinrück H-P (2014) Carbon dioxide capture by an amine functionalized ionic liquid: fundamental differences of surface and bulk behavior. J Am Chem Soc 136(1):436–441

    Article  CAS  Google Scholar 

  • Niu B, Al-Menhali A, Krevor S (2014) A study of residual carbon dioxide trapping in sandstone. Energy Procedia 63:5522–5529

    Article  CAS  Google Scholar 

  • Niu Q, Wang Q, Wang W, Chang J, Chen M, Wang H, Cai N, Fan L (2022) Responses of multi-scale microstructures, physical-mechanical and hydraulic characteristics of roof rocks caused by the supercritical CO2-water-rock reaction. Energy 238:121727

    Article  CAS  Google Scholar 

  • Nong D, Simshauser P, Nguyen DB (2021) Greenhouse gas emissions vs CO2 emissions: comparative analysis of a global carbon tax. Appl Energy 298:117223

    Article  Google Scholar 

  • Núñez-López V, Moskal E (2019) Potential of CO2-EOR for near-term decarbonization. Front Clim 1:5

    Article  Google Scholar 

  • O’Neill BC, Carter TR, Ebi K, Harrison PA, Kemp-Benedict E, Kok K, Kriegler E, Preston BL, Riahi K, Sillmann J (2020) Achievements and needs for the climate change scenario framework. Nat Clim Change 10(12):1074–1084

    Article  Google Scholar 

  • Ochedi FO, Yu J, Yu H, Liu Y, Hussain A (2021) Carbon dioxide capture using liquid absorption methods: a review. Environ Chem Lett 19(1):77–109

    Article  CAS  Google Scholar 

  • Ogland-Hand JD, Cohen S, Kammer RM, Ellett KM, Saar MO, Bennett JA, Middleton RS (2022) The Importance of modeling carbon dioxide transportation and geologic storage in energy system planning tools. Front Energy Res 10:855105

    Article  Google Scholar 

  • Oh H-T, Kum J, Park J, Vo ND, Kang J-H, Lee C-H (2022) Pre-combustion CO2 capture using amine-based absorption process for blue H2 production from steam methane reformer. Energy Convers Manag 262:115632

    Article  CAS  Google Scholar 

  • Olabi A, Obaideen K, Elsaid K, Wilberforce T, Sayed ET, Maghrabie HM, Abdelkareem MA (2022) Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew Sustain Energy Rev 153:111710

    Article  CAS  Google Scholar 

  • Onyebuchi VE, Kolios A, Hanak DP, Biliyok C, Manovic V (2018) A systematic review of key challenges of CO2 transport via pipelines. Renew Sustain Energy Rev 81:2563–2583

    Article  CAS  Google Scholar 

  • Orr FM (2009) Onshore geologic storage of CO2. Science 325(5948):1656–1658

    Article  CAS  Google Scholar 

  • Osman AI, Hefny M, Abdel Maksoud M, Elgarahy AM, Rooney DW (2021) Recent advances in carbon capture storage and utilisation technologies: a review. Environ Chem Lett 19(2):797–849

    Article  CAS  Google Scholar 

  • Page B, Turan G, Zapantis A, Beck L, Consoli C, Havercroft I, Liu H, Loria P, Schneider A, Tamme E (2019) Global status of CCS 2019; Technical Report. Global CCS Institute, Melbourne, Australia

  • Page B, Turan G, Zapantis A, Burrows J, Consoli C, Erikson J, Havercroft I, Kearns D, Liu H, Rassool D (2020) The global status of CCS 2020: vital to achieve net zero

  • Paltsev S, Morris J, Kheshgi H, Herzog H (2021) Hard-to-abate sectors: the role of industrial carbon capture and storage (CCS) in emission mitigation. Appl Energy 300:117322

    Article  CAS  Google Scholar 

  • Pan Z, Ye J, Zhou F, Tan Y, Connell LD, Fan J (2018) CO2 storage in coal to enhance coalbed methane recovery: a review of field experiments in China. Int Geol Rev 60(5–6):754–776

    Article  Google Scholar 

  • Park J, Choi B-Y, Lee M, Yang M (2021) Porosity changes due to analcime in a basaltic tuff from the Janggi Basin, Korea: experimental and geochemical modeling study of CO2–water–rock interactions. Environ Earth Sci 80(3):1–13

    Article  Google Scholar 

  • Pawar R, Bromhal G, Carroll S, Chu S, Dilmore R, Gastelum J, Oldenburg C, Stauffer P, Zhang Y, Guthrie G (2014) Quantification of key long-term risks at CO2 sequestration sites: Latest results from US DOE's National Risk Assessment Partnership (NRAP) Project. Energy Procedia (Online) 63(C)

  • Peletiri SP, Rahmanian N, Mujtaba IM (2018) CO2 pipeline design: a review. Energies 11(9):2184

    Article  Google Scholar 

  • Perskin JB, Traum MJ, von Hippel T, Boetcher SK (2022) On the feasibility of precompression for direct atmospheric cryogenic carbon capture. Carbon Capture Sci Technol 4:100063

    Article  CAS  Google Scholar 

  • Ponzi GGD, dos Santos VHJM, Martel RB, Pontin D, Stepanha ASDG, Schütz MK, Menezes SC, Einloft SM, Dalla Vecchia F (2021) Basalt powder as a supplementary cementitious material in cement paste for CCS wells: chemical and mechanical resistance of cement formulations for CO2 geological storage sites. Int J Greenh Gas Control 109:103337

  • Porter RT, Fairweather M, Kolster C, Mac Dowell N, Shah N, Woolley RM (2017) Cost and performance of some carbon capture technology options for producing different quality CO2 product streams. Int J Greenh Gas Control 57:185–195

    Article  CAS  Google Scholar 

  • Postma TJ, Bandilla KW, Celia MA (2022) Implications of CO2 mass transport dynamics for large-scale CCS in basalt formations. Int J Greenh Gas Control 121:103779

    Article  CAS  Google Scholar 

  • Preston C, Monea M, Jazrawi W, Brown K, Whittaker S, White D, Law D, Chalaturnyk R, Rostron B (2005) IEA GHG Weyburn CO2 monitoring and storage project. Fuel Process Technol 86(14–15):1547–1568

    Article  CAS  Google Scholar 

  • Punnam PR, Krishnamurthy B, Surasani VK (2022) Influence of caprock morphology on solubility trapping during co2 geological sequestration. Geofluids 6:7

    Google Scholar 

  • Qiao T, Hoteit H, Fahs M (2021) Semi-analytical solution to assess CO2 leakage in the subsurface through abandoned wells. Energies 14(9):2452

    Article  CAS  Google Scholar 

  • Qureshi MF, Zheng J, Khandelwal H, Venkataraman P, Usadi A, Barckholtz TA, Mhadeshwar AB, Linga P (2022) Laboratory demonstration of the stability of CO2 hydrates in deep-oceanic sediments. Chem Eng J 432:134290

    Article  Google Scholar 

  • Qureshi MF, Khandelwal H, Usadi A, Barckholtz TA, Mhadeshwar AB, Linga P (2022) CO2 hydrate stability in oceanic sediments under brine conditions. Energy 256:124625

    Article  CAS  Google Scholar 

  • Quynh Hoa L, Baessler R, Bettge D (2019) On the corrosion mechanism of CO2 transport pipeline steel caused by condensate: Synergistic effects of NO2 and SO2. Materials 12(3):364

    Article  Google Scholar 

  • Raad SMJ, Leonenko Y, Hassanzadeh H (2022) Hydrogen storage in saline aquifers: opportunities and challenges. Renew Sustain Energy Rev 168:112846

    Article  Google Scholar 

  • Ramasubramanian K, Verweij H, Ho WW (2012) Membrane processes for carbon capture from coal-fired power plant flue gas: a modeling and cost study. J Membr Sci 421:299–310

    Article  Google Scholar 

  • Ranaee E, Khattar R, Inzoli F, Blunt MJ, Guadagnini A (2022) Assessment and uncertainty quantification of onshore geological CO2 storage capacity in China. Int J Greenh Gas Control 121:103804

    Article  CAS  Google Scholar 

  • Rasmusson M, Rasmusson K, Fagerlund F, Tsang Y, Niemi A (2018) The impact of co-contaminant SO2, versus salinity and thermodynamic conditions, on residual CO2 trapping during geological storage. Greenh Gases Sci Technol 8(6):1053–1065

    Article  CAS  Google Scholar 

  • Ratanpara A, Shaw A, Thomas M, Patel RN, Kim M (2021) Microfluidic analysis of seawater-based CO2 capture in an amine solution with nickel nanoparticle catalysts. J CO2 Util 53:101712

    Article  CAS  Google Scholar 

  • Ravichandran SR, Venkatachalam CD, Sengottian M, Sekar S, Kandasamy S, Subramanian KPR, Purushothaman K, Chandrasekaran AL, Narayanan M (2022) A review on hydrothermal liquefaction of algal biomass on process parameters, purification and applications. Fuel 313:122679

    Article  CAS  Google Scholar 

  • Raza A, Glatz G, Gholami R, Mahmoud M, Alafnan S (2022) Carbon mineralization and geological storage of CO2 in basalt: mechanisms and technical challenges. Earth Sci Rev 229:104036

    Article  CAS  Google Scholar 

  • Read A, Gittins C, Uilenreef J, Jonker T, Neele F, Belfroid S, Goetheer E, Wildenborg T (2019) Lessons from the ROAD project for future deployment of CCS. Int J Greenh Gas Control 91:102834

    Article  CAS  Google Scholar 

  • Renfrew SE, Starr DE, Strasser P (2020) Electrochemical approaches toward CO2 capture and concentration. ACS Catal 10(21):13058–13074

    Article  CAS  Google Scholar 

  • Ringrose PS (2018) The CCS hub in Norway: some insights from 22 years of saline aquifer storage. Energy Procedia 146:166–172

    Article  CAS  Google Scholar 

  • Roberts JJ, Stalker L (2020) What have we learnt about CO2 leakage from CO2 release field experiments, and what are the gaps for the future? Earth Sci Rev 209:102939

    Article  CAS  Google Scholar 

  • Rochelle CA, Czernichowski-Lauriol I, Milodowski A (2004) The impact of chemical reactions on CO2 storage in geological formations: a brief review. Geol Soc Lond Spec Publ 233(1):87–106

    Article  CAS  Google Scholar 

  • Rock L, O’Brien S, Tessarolo S, Duer J, Bacci VO, Hirst B, Randell D, Helmy M, Blackmore J, Duong C (2017) The Quest CCS project: 1st year review post start of injection. Energy Procedia 114:5320–5328

    Article  CAS  Google Scholar 

  • Romeo LM, Lara Y, Lisbona P, Escosa JM (2009) Optimizing make-up flow in a CO2 capture system using CaO. Chem Eng J 147(2–3):252–258

    Article  CAS  Google Scholar 

  • Rubin ES, Yeh S, Antes M, Berkenpas M, Davison J (2007) Use of experience curves to estimate the future cost of power plants with CO2 capture. Int J Greenh Gas Control 1(2):188–197

    Article  CAS  Google Scholar 

  • Rubin ES, Mantripragada H, Marks A, Versteeg P, Kitchin J (2012) The outlook for improved carbon capture technology. Prog Energy Combust Sci 38(5):630–671

    Article  CAS  Google Scholar 

  • Russo F, Galiano F, Iulianelli A, Basile A, Figoli A (2021) Biopolymers for sustainable membranes in CO2 separation: a review. Fuel Process Technol 213:106643

    Article  CAS  Google Scholar 

  • Sabatino F, Grimm A, Gallucci F, van Sint Annaland M, Kramer GJ, Gazzani M (2021) A comparative energy and costs assessment and optimization for direct air capture technologies. Joule 5(8):2047–2076

    Article  CAS  Google Scholar 

  • Sadiq MM, Batten MP, Mulet X, Freeman C, Konstas K, Mardel JI, Tanner J, Ng D, Wang X, Howard S (2020) A pilot-scale demonstration of mobile direct air capture using metal–organic frameworks. Adv Sustain Syst 4(12):2000101

    Article  CAS  Google Scholar 

  • Safaei-Farouji M, Thanh HV, Dai Z, Mehbodniya A, Rahimi M, Ashraf U, Radwan AE (2022) Exploring the power of machine learning to predict carbon dioxide trapping efficiency in saline aquifers for carbon geological storage project. J Clean Prod 372:133778

    Article  CAS  Google Scholar 

  • Salvador C, Lu D, Anthony EJ, Abanades J (2003) Enhancement of CaO for CO2 capture in an FBC environment. Chem Eng J 96(1–3):187–195

    Article  CAS  Google Scholar 

  • Saraf S, Bera A (2021) A review on pore-scale modeling and CT scan technique to characterize the trapped carbon dioxide in impermeable reservoir rocks during sequestration. Renew Sustain Energy Rev 144:110986

    Article  CAS  Google Scholar 

  • Sattari A, Ramazani A, Aghahosseini H, Aroua MK (2021) The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. J CO2 Util 48:101526

    Article  CAS  Google Scholar 

  • Saxena V, Padhi SK, Pattanaik L, Bhatt R (2022) Simultaneous removal of carbon, nitrogen, and phosphorus from landfill leachate using an aerobic granular reactor. Environ Technol Innov 28:102657

    Article  CAS  Google Scholar 

  • Schreurs MA (2019) Climate change politics in the US, China, and the EU: climate science and the framing of climate action. In: The evolving relationship between China, the EU and the USA, Routledge, pp 192–211

  • Senatore V, Buonerba A, Zarra T, Oliva G, Belgiorno V, Boguniewicz-Zablocka J, Naddeo V (2021) Innovative membrane photobioreactor for sustainable CO2 capture and utilization. Chemosphere 273:129682

    Article  CAS  Google Scholar 

  • Shafabakhsh P, Ataie-Ashtiani B, Simmons CT, Younes A, Fahs M (2021) Convective-reactive transport of dissolved CO2 in fractured-geological formations. Int J Greenh Gas Control 109:103365

    Article  CAS  Google Scholar 

  • Shang Z, Wang H, Li B, Cheng Y, Zhang X, Wang Z, Geng S, Wang Z, Chen P, Lv P (2022) The effect of leakage characteristics of liquid CO2 phase transition on fracturing coal seam: Applications for enhancing coalbed methane recovery. Fuel 308:122044

    Article  CAS  Google Scholar 

  • Shao P, Dal-Cin MM, Guiver MD, Kumar A (2013) Simulation of membrane-based CO2 capture in a coal-fired power plant. J Membr Sci 427:451–459

    Article  CAS  Google Scholar 

  • Shen M, Kong F, Tong L, Luo Y, Yin S, Liu C, Zhang P, Wang L, Chu PK, Ding Y (2022) Carbon capture and storage (CCS): development path based on carbon neutrality and economic policy. Carbon Neutrality 1(1):37

    Article  Google Scholar 

  • Shen M, Tong L, Yin S, Liu C, Wang L, Feng W, Ding Y (2022) Cryogenic technology progress for CO2 capture under carbon neutrality goals: a review. Sep Purif Technol 299:121734

    Article  CAS  Google Scholar 

  • Sheng M, Dong S, Qiao Z, Li Q, Yuan Y, Xing G, Zhao S, Wang J, Wang Z (2021) Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture. J Membr Sci 636:119595

    Article  CAS  Google Scholar 

  • Shi X, Xiao H, Azarabadi H, Song J, Wu X, Chen X, Lackner KS (2020) Sorbents for the direct capture of CO2 from ambient air. Angew Chem Int Ed 59(18):6984–7006

    Article  CAS  Google Scholar 

  • Shipton ZK, Evans JP, Kirschner D, Kolesar PT, Williams AP, Heath J (2004) Analysis of CO2 leakage through ‘low-permeability’faults from natural reservoirs in the Colorado Plateau, east-central Utah. Geol Soc Lond Spec Publ 233(1):43–58

    Article  CAS  Google Scholar 

  • Siagian UW, Raksajati A, Himma NF, Khoiruddin K, Wenten I (2019) Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor. J Natl Gas Sci Eng 67:172–195

    Article  CAS  Google Scholar 

  • Singh U, Rao AB (2016) Techno-economic assessment of carbon mitigation options for existing coal-fired power plants in India. Energy Procedia 90:326–335

    Article  CAS  Google Scholar 

  • Singh K, Anabaraonye BU, Blunt MJ, Crawshaw J (2018) Partial dissolution of carbonate rock grains during reactive CO2-saturated brine injection under reservoir conditions. Adv Water Resour 122:27–36

    Article  CAS  Google Scholar 

  • Sistla YS, Khanna A (2015) CO2 absorption studies in amino acid-anion based ionic liquids. Chem Eng J 273:268–276

    Article  CAS  Google Scholar 

  • Smith E, Morris J, Kheshgi H, Teletzke G, Herzog H, Paltsev S (2021) The cost of CO2 transport and storage in global integrated assessment modeling. Int J Greenh Gas Control 109:103367

    Article  Google Scholar 

  • Sodeifian G, Raji M, Asghari M, Rezakazemi M, Dashti A (2019) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem Eng 27(2):322–334

    Article  CAS  Google Scholar 

  • Sodiq A, Abdullatif Y, Aissa B, Ostovar A, Nassar N, El-Naas M, Amhamed A (2022) A review on progress made in direct air capture of CO. Environ Technol Innov 29:102991

    Article  Google Scholar 

  • Sohaib Q, Muhammad A, Younas M, Rezakazemi M, Druon-Bocquet S, Sanchez-Marcano J (2021) Rigorous non-isothermal modeling approach for mass and energy transport during CO2 absorption into aqueous solution of amino acid ionic liquids in hollow fiber membrane contactors. Sep Purif Technol 254:117644

    Article  CAS  Google Scholar 

  • Solomon S (2007) Carbon dioxide storage: geological security and environmental issues—case study on the sleipner gas field in Norway. Bellona Rep 128

  • Song C, Liu Q, Deng S, Li H, Kitamura Y (2019) Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renew Sustain Energy Rev 101:265–278

    Article  CAS  Google Scholar 

  • Spycher N, Pruess K, Ennis-King J (2003) CO2–H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 C and up to 600 bar. Geochim Cosmochim Acta 67(16):3015–3031

    Article  CAS  Google Scholar 

  • Stigson P, Hansson A, Lind M (2012) Obstacles for CCS deployment: an analysis of discrepancies of perceptions. Mitig Adapt Strat Glob Change 17:601–619

    Article  Google Scholar 

  • Stojic S, Sorokina E, De Gennaro V, Abdrakhmanova L, Nasreldin G, Vasilyev A, Chernyak V, Kazanenkova A, Dementyev D, Zolotaya TI, Methodology of Site Screening and Selection for the Purpose of Geological Storage of Carbon Dioxide, EAGE GeoTech, (2022) Sixth EAGE workshop on CO2 geological storage. Eur Assoc Geosci Eng 2022:1–4

    Google Scholar 

  • Subraveti SG, Roussanaly S, Anantharaman R, Riboldi L, Rajendran A (2021) Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas. Sep Purif Technol 256:117832

    Article  CAS  Google Scholar 

  • Sujan AR, Pang SH, Zhu G, Jones CW, Lively RP (2019) Direct CO2 capture from air using poly (ethylenimine)-loaded polymer/silica fiber sorbents. ACS Sustain Chem Eng 7(5):5264–5273

    Article  CAS  Google Scholar 

  • Sullivan I, Goryachev A, Digdaya IA, Li X, Atwater HA, Vermaas DA, Xiang C (2021) Coupling electrochemical CO2 conversion with CO2 capture. Nat Catal 4(11):952–958

    Article  CAS  Google Scholar 

  • Sun H, Chen B, Yang Z, Song Y, Yang M (2022) Natural gas hydrate accumulation mechanisms considering the multi-phase seepage and exploitation disturbance in porous media. Fuel 330:125687

    Article  CAS  Google Scholar 

  • Tan Y, Nookuea W, Li H, Thorin E, Yan J (2016) Property impacts on carbon capture and storage (CCS) processes: a review. Energy Convers Manag 118:204–222

    Article  CAS  Google Scholar 

  • Tang Y, Hu S, He Y, Wang Y, Wan X, Cui S, Long K (2021) Experiment on CO2-brine-rock interaction during CO2 injection and storage in gas reservoirs with aquifer. Chem Eng J 413:127567

    Article  CAS  Google Scholar 

  • Tao Q, Checkai D, Huerta N, Bryant SL (2010) Model to predict CO2 leakage rates along a wellbore. In: SPE annual technical conference and exhibition, OnePetro

  • Tawiah P, Wang H, Bryant SL, Dong M, Larter S, Duer J (2021) Effects of temperature and CO2/Brine cycles on CO2 drainage endpoint phase mobility—implications for CO2 injectivity in deep saline aquifers. Int J Greenh Gas Control 112:103491

    Article  CAS  Google Scholar 

  • Tcvetkov P, Cherepovitsyn A, Fedoseev S (2019) The changing role of CO2 in the transition to a circular economy: review of carbon sequestration projects. Sustainability 11(20):5834

    Article  CAS  Google Scholar 

  • Tewari RD, Sedaralit MF (2021) In making things right in development and management of highly contaminated giant carbonate gas field and returning the CO2 to subsurface sequestration. In: International petroleum technology conference, OnePetro

  • Thanasaksukthawee V, Santha N, Saenton S, Tippayawong N, Jaroonpattanapong P, Foroozesh J, Tangparitkul S (2022) Relative CO2 column height for CO2 geological storage: a non-negligible contribution from reservoir rock characteristics. Energy Fuels 36(7):3727–3736

    Article  CAS  Google Scholar 

  • Tian Q, Zhao D, Li Z, Zhu Q (2017) Robust and stepwise optimization design for CO2 pipeline transportation. Int J Greenh Gas Control 58:10–18

    Article  CAS  Google Scholar 

  • Ülker D, Bayırhan İ, Mersin K, Gazioğlu C (2021) A comparative CO2 emissions analysis and mitigation strategies of short-sea shipping and road transport in the Marmara Region. Carbon Manag 12(1):1–12

    Google Scholar 

  • Van den Broek M, Hoefnagels R, Rubin E, Turkenburg W, Faaij A (2009) Effects of technological learning on future cost and performance of power plants with CO2 capture. Prog Energy Combust Sci 35(6):457–480

    Article  Google Scholar 

  • Van Vuuren DP, Stehfest E, Gernaat DE, Van Den Berg M, Bijl DL, De Boer HS, Daioglou V, Doelman JC, Edelenbosch OY, Harmsen M (2018) Alternative pathways to the 1.5 C target reduce the need for negative emission technologies. Nat Clim Change 8(5):391–397

    Article  Google Scholar 

  • Vasco D, Rucci A, Ferretti A, Novali F, Bissell R, Ringrose P, Mathieson A, Wright I (2010) Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophys Res Lett 37(3):L03303

    Article  Google Scholar 

  • Vázquez FV, Koponen J, Ruuskanen V, Bajamundi C, Kosonen A, Simell P, Ahola J, Frilund C, Elfving J, Reinikainen M (2018) Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. J CO2 Util 28:235–246

    Article  Google Scholar 

  • Verma Y, Vishal V, Ranjith P (2021) Sensitivity analysis of geomechanical constraints in CO2 storage to screen potential sites in deep saline aquifers. Front Clim 3:720959

    Article  Google Scholar 

  • Vishal V, Verma Y, Chandra D, Ashok D (2021) A systematic capacity assessment and classification of geologic CO2 storage systems in India. Int J Greenh Gas Control 111:103458

    Article  CAS  Google Scholar 

  • Vitali M, Zuliani C, Corvaro F, Marchetti B, Terenzi A, Tallone F (2021) Risks and safety of CO2 transport via pipeline: a review of risk analysis and modeling approaches for accidental releases. Energies 14(15):4601

    Article  CAS  Google Scholar 

  • Vree B, Ahmad M, Buit L, Florisson O (2015) Rapid depressurization of a CO2 pipeline—an experimental study. Int J Greenh Gas Control 41:41–49

    Article  CAS  Google Scholar 

  • Waage M, Singhroha S, Bünz S, Planke S, Waghorn KA, Bellwald B (2021) Feasibility of using the P-Cable high-resolution 3D seismic system in detecting and monitoring CO2 leakage. Int J Greenh Gas Control 106:103240

    Article  CAS  Google Scholar 

  • Walton F, Sheppard M, LeNeveu D, Tait J, Goodwin B (2004) Probabilistic risk assessment of the IEA Weyburn CO2 monitoring and storage project. In: Final report to petroleum technology research centre for phase I of the IEA Weyburn CO2 monitoring and storage project, ECOMatters Inc

  • Wang X, Du L (2016) Study on carbon capture and storage (CCS) investment decision-making based on real options for China’s coal-fired power plants. J Clean Prod 112:4123–4131

    Article  Google Scholar 

  • Wang X, Zhang H (2018) Optimal design of carbon tax to stimulate CCS investment in China’s coal-fired power plants: a real options analysis. Greenh Gases Sci Technol 8(5):863–875

    Article  Google Scholar 

  • Wang C, Luo X, Luo H, Jiang DE, Li H, Dai S (2011) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chem 123(21):5020–5024

    Article  Google Scholar 

  • Wang W, Ramkumar S, Wong D, Fan L-S (2012) Simulations and process analysis of the carbonation–calcination reaction process with intermediate hydration. Fuel 92(1):94–106

    Article  Google Scholar 

  • Wang X, Zhang D, Su E, Jiang Z, Wang C, Chu Y, Ye C (2020) Pore structure and diffusion characteristics of intact and tectonic coals: implications for selection of CO2 geological sequestration site. J Natl Gas Sci Eng 81:103388

    Article  CAS  Google Scholar 

  • Wang H, Alvarado V, Bagdonas DA, McLaughlin JF, Kaszuba JP, Grana D, Campbell E, Ng K (2021) Effect of CO2-brine-rock reactions on pore architecture and permeability in dolostone: Implications for CO2 storage and EOR. Int J Greenh Gas Control 107:103283

    Article  CAS  Google Scholar 

  • Wang F, Ping S, Yuan Y, Sun Z, Tian H, Yang Z (2021) Effects of the mechanical response of low-permeability sandstone reservoirs on CO2 geological storage based on laboratory experiments and numerical simulations. Sci Total Environ 796:149066

    Article  CAS  Google Scholar 

  • Wang Y, Vuik C, Hajibeygi H (2022) CO2 Storage in deep saline aquifers: impacts of fractures on hydrodynamic trapping. Int J Greenh Gas Control 113:103552

    Article  CAS  Google Scholar 

  • Wang G, Cheng Q, Zhao W, Liao Q, Zhang H (2022) Review on the transport capacity management of oil and gas pipeline network: Challenges and opportunities of future pipeline transport. Energy Strat Rev 43:100933

    Article  Google Scholar 

  • Wang Z, Li H, Liu S, Xu J, Liu J, Wang X (2023) Risk evaluation of CO2 leakage through fracture zone in geological storage reservoir. Fuel 342:127896

    Article  CAS  Google Scholar 

  • Wang H, Chen J, Li Q (2019) A review of pipeline transportation technology of carbon dioxide. In: IOP conference series: earth and environmental science. IOP Publishing, p 032033

  • Wei N, Li X, Wang Q, Gao S (2016) Budget-type techno-economic model for onshore CO2 pipeline transportation in China. Int J Greenh Gas Control 51:176–192

    Article  Google Scholar 

  • Wei Y-M, Li X-Y, Liu L-C, Kang J-N, Yu B-Y (2022) A cost-effective and reliable pipelines layout of carbon capture and storage for achieving China’s carbon neutrality target. J Clean Prod 379:134651

    Article  CAS  Google Scholar 

  • Wei N, Li X, Jiao Z, Stauffer PH, Ellett KM, Middleton RSR (2022) A hierarchical framework for CO2 storage capacity in deep saline aquifer formations. Front Earth Sci 9:777323

    Article  Google Scholar 

  • Wijesiri RP, Knowles GP, Yeasmin H, Hoadley AF, Chaffee AL (2019) Desorption process for capturing CO2 from air with supported amine sorbent. Ind Eng Chem Res 58(34):15606–15618

    Article  CAS  Google Scholar 

  • Wilberforce T, Baroutaji A, Soudan B, Al-Alami AH, Olabi AG (2019) Outlook of carbon capture technology and challenges. Sci Total Environ 657:56–72

    Article  CAS  Google Scholar 

  • Wilberforce T, Olabi A, Sayed ET, Elsaid K, Abdelkareem MA (2021) Progress in carbon capture technologies. Sci Total Environ 761:143203

    Article  CAS  Google Scholar 

  • Wilcox J, Psarras PC, Liguori S (2017) Assessment of reasonable opportunities for direct air capture. Environ Res Lett 12(6):065001

    Article  Google Scholar 

  • Winnick J, Toghiani H, Quattrone P (1982) Carbon dioxide concentration for manned spacecraft using a molten carbonate electrochemical cell. AIChE J 28(1):103–111

    Article  CAS  Google Scholar 

  • Wise M, Dooley J, Dahowski R, Davidson C (2007) Modeling the impacts of climate policy on the deployment of carbon dioxide capture and geologic storage across electric power regions in the United States. Int J Greenh Gas Control 1(2):261–270

    Article  CAS  Google Scholar 

  • Witkowski A, Rusin A, Majkut M, Rulik S, Stolecka K (2013) Comprehensive analysis of pipeline transportation systems for CO2 sequestration. Thermodynamics and safety problems. Energy Convers Manag 76:665–673

    Article  CAS  Google Scholar 

  • Wu H, Li Q, Sheng M, Wang Z, Zhao S, Wang J, Mao S, Wang D, Guo B, Ye N (2021) Membrane technology for CO2 capture: from pilot-scale investigation of two-stage plant to actual system design. J Membr Sci 624:119137

    Article  CAS  Google Scholar 

  • Xiang Y, Wang Z, Yang X, Li Z, Ni W (2012) The upper limit of moisture content for supercritical CO2 pipeline transport. J Supercrit Fluids 67:14–21

    Article  CAS  Google Scholar 

  • Xiang Y, Xu M, Choi Y-S (2017) State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models. Corros Eng Sci Technol 52(7):485–509

    Article  CAS  Google Scholar 

  • Xiao T, Tu J, Wang B, Esser R, Bailey T, Cather M, Tian H, McPherson B (2023) Chemical impacts of subsurface CO2 and brine on shallow groundwater quality. Chemosphere 321:138048

    Article  CAS  Google Scholar 

  • Xie K, Fu Q, Qiao GG, Webley PA (2019) Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. J Membr Sci 572:38–60

    Article  CAS  Google Scholar 

  • Xu L, Li Q, Myers M, White C, Cao X (2022) Migration of carbon dioxide in sandstone under various pressure/temperature conditions: From experiment to simulation. Greenh Gases Sci Technol 12(2):233–248

    Article  CAS  Google Scholar 

  • Xue Y, Teng T, Dang F, Ma Z, Wang S, Xue H (2020) Productivity analysis of fractured wells in reservoir of hydrogen and carbon based on dual-porosity medium model. Int J Hydrog Energy 45(39):20240–20249

    Article  CAS  Google Scholar 

  • Yaashikaa P, Kumar PS, Varjani SJ, Saravanan A (2019) A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J CO2 Util 33:131–147

    Article  CAS  Google Scholar 

  • Yamada H (2021) Amine-based capture of CO2 for utilization and storage. Polym J 53(1):93–102

    Article  Google Scholar 

  • Yan S-P, Fang M-X, Zhang W-F, Wang S-Y, Xu Z-K, Luo Z-Y, Cen K-F (2007) Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88(5):501–511

    Article  CAS  Google Scholar 

  • Yan YH, Borhani T, Subraveti G, Pai N, Prasad V, Rajendran A, Nkulikiyinka P, Asibor JO, Zhang Z, Shao D (2021) Harnessing the power of machine learning for carbon capture utilisation, and storage (CCUS)–a state-of-the-art review. Energy Environ Sci 14:6122–6157

    Article  CAS  Google Scholar 

  • Yang L, Xu M, Yang Y, Fan J, Zhang X (2019) Comparison of subsidy schemes for carbon capture utilization and storage (CCUS) investment based on real option approach: evidence from China. Appl Energy 255:113828

    Article  Google Scholar 

  • Yang X, Buscheck TA, Mansoor K, Wang Z, Gao K, Huang L, Appriou D, Carroll SA (2019) Assessment of geophysical monitoring methods for detection of brine and CO2 leakage in drinking water aquifers. Int J Greenh Gas Control 90:102803

    Article  CAS  Google Scholar 

  • Yang L, Lv H, Jiang D, Fan J, Zhang X, He W, Zhou J, Wu W (2020) Whether CCS technologies will exacerbate the water crisis in China? A full life-cycle analysis. Renew Sustain Energy Rev 134:110374

    Article  CAS  Google Scholar 

  • Yang Z, Guo W, Mahurin SM, Wang S, Chen H, Cheng L, Jie K, Meyer HM, Jiang D-E, Liu G (2020) Surpassing Robeson upper limit for CO2/N2 separation with fluorinated carbon molecular sieve membranes. Chem 6(3):631–645

    Article  CAS  Google Scholar 

  • Yang F, Meerman J, Faaij A (2021) Carbon capture and biomass in industry: a techno-economic analysis and comparison of negative emission options. Renew Sustain Energy Rev 144:111028

    Article  CAS  Google Scholar 

  • Yao M (2017) Study on the migration law of carbon dioxide geological storage. Southwest Petroleum University

  • Yao X, Zhong P, Zhang X, Zhu L (2018) Business model design for the carbon capture utilization and storage (CCUS) project in China. Energy Policy 121:519–533

    Article  Google Scholar 

  • Yao X, Fan Y, Xu Y, Zhang X, Zhu L, Feng L (2019) Is it worth to invest? An evaluation of CTL-CCS project in China based on real options. Energy 182:920–931

    Article  CAS  Google Scholar 

  • Yao X, Fan Y, Zhu L, Zhang X (2020) Optimization of dynamic incentive for the deployment of carbon dioxide removal technology: A nonlinear dynamic approach combined with real options. Energy Econ 86:104643

    Article  Google Scholar 

  • Yi H, Li F, Ning P, Tang X, Peng J, Li Y, Deng H (2013) Adsorption separation of CO2, CH4, and N2 on microwave activated carbon. Chem Eng J 215:635–642

    Article  Google Scholar 

  • Yoro KO, Daramola MO, Sekoai PT, Armah EK, Wilson UN (2021) Advances and emerging techniques for energy recovery during absorptive CO2 capture: a review of process and non-process integration-based strategies. Renew Sustain Energy Rev 147:111241

    Article  CAS  Google Scholar 

  • You J, Ampomah W, Sun Q (2020) Development and application of a machine learning based multi-objective optimization workflow for CO2-EOR projects. Fuel 264:116758

    Article  CAS  Google Scholar 

  • Yu H, Li J, Zhang Y, Yang S, Han K, Dong F, Ma T, Huang H (2019) Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew Chem Int Ed 58(12):3880–3884

    Article  CAS  Google Scholar 

  • Yu M, Zhang X, Ma X (2022) Yield and quality responses of sunflowers to soil CO2 leakage from CCS projects. Int J Environ Sci Technol 19(7):6721–6728

    Article  CAS  Google Scholar 

  • Yue P, Yang H, Yu G, Yang Z, Sheng J, Jia B (2022) Leakage risk evaluation model for single wells of CO2: a case study. Energy Sour Part A Recov Util Environ Eff 44(2):2637–2650

    Article  Google Scholar 

  • Zhang D, Song J (2014) Mechanisms for geological carbon sequestration. Procedia IUTAm 10:319–327

    Article  Google Scholar 

  • Zhang Z, Wang G, Massarotto P, Rudolph V (2006) Optimization of pipeline transport for CO2 sequestration. Energy Convers Manag 47(6):702–715

    Article  CAS  Google Scholar 

  • Zhang J, Jia C, Dong H, Wang J, Zhang X, Zhang S (2013) A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture. Ind Eng Chem Res 52(17):5835–5841

    Article  CAS  Google Scholar 

  • Zhang X, Wang X, Chen J, Xie X, Wang K, Wei Y (2014) A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties. Appl Energy 113:1059–1067

    Article  Google Scholar 

  • Zhang L, Wang Y, Miao X, Gan M, Li X (2019) Geochemistry in geologic CO2 utilization and storage: a brief review. Adv Geo-Energy Res 3(3):304–313

    Article  Google Scholar 

  • Zhang X, Song P, Jiang L (2020) Performance evaluation of an integrated redesigned coal fired power plant with CO2 capture by calcium looping process. Appl Therm Eng 170:115027

    Article  CAS  Google Scholar 

  • Zhang K, Sang S, Zhou X, Liu C, Ma M, Niu Q (2021) Influence of supercritical CO2-H2O-caprock interactions on the sealing capability of deep coal seam caprocks related to CO2 geological storage: a case study of the silty mudstone caprock of coal seam no. 3 in the Qinshui Basin, China. Int J Greenh Gas Control 106:10328

    Article  Google Scholar 

  • Zhang P, Tong J, Huang K, Zhu X, Yang W (2021) The current status of high temperature electrochemistry-based CO2 transport membranes and reactors for direct CO2 capture and conversion. Prog Energy Combust Sci 82:100888

    Article  Google Scholar 

  • Zhang T, Zhang W, Yang R, Liu Y, Jafari M (2021) CO2 capture and storage monitoring based on remote sensing techniques: a review. J Clean Prod 281:124409

    Article  CAS  Google Scholar 

  • Zhang T, Zhang W, Yang R, Gao H, Cao D (2022) Analysis of available conditions for InSAR surface deformation monitoring in CCS projects. Energies 15(2):672

    Article  CAS  Google Scholar 

  • Zhang C, Shen Y, Zhang D, Tang Z, Li W (2022) Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC. Energy 257:124715

    Article  CAS  Google Scholar 

  • Zhang K, Bokka HK, Lau HC (2022) Decarbonizing the energy and industry sectors in Thailand by carbon capture and storage. J Petrol Sci Eng 209:109979

    Article  CAS  Google Scholar 

  • Zhang T, Zhang W, Yang R, Cao D, Chen L, Li D, Meng L (2022) CO2 injection deformation monitoring based on UAV and InSAR technology: a case study of Shizhuang Town, Shanxi Province, China. Remote Sens 14(1):237

    Article  Google Scholar 

  • Zhang X, Liu W, Chen J, Jiang D, Fan J, Daemen J, Qiao W (2022) Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability. Energy 249:123727

    Article  CAS  Google Scholar 

  • Zhao D, Zhang J, Li Z, Li Q, Liu H, Lu S (2014) An engineering-economic model for CO2 pipeline transportation in China. Int J Comput Appl Technol 49(1):60–68

    Article  Google Scholar 

  • Zhao G, Yang M, Pang W, Gong G, Zheng J-N, Zhang P, Chen B (2022) Effects of hydrate cap on leakage prevention and capacity improvement of sub-seabed CO2 sequestration. Chem Eng J 450:138493

    Article  CAS  Google Scholar 

  • Zhong P, Zhang X, Lei Z (2018) Business model design for the carbon capture utilization and storage (CCUS) project in China. Energy Policy

  • Zhu L, Fan Y (2011) A real options–based CCS investment evaluation model: case study of China’s power generation sector. Appl Energy 88(12):4320–4333

    Article  Google Scholar 

  • Zhu L, Fan Y (2013) Modelling the investment in carbon capture retrofits of pulverized coal-fired plants. Energy 57:66–75

    Article  Google Scholar 

  • Zhu D, Peng S, Zhao S, Wei M, Bai B (2021) Comprehensive review of sealant materials for leakage remediation technology in geological CO2 capture and storage process. Energy Fuels 35(6):4711–4742

    Article  CAS  Google Scholar 

  • Zhu S, Delmo EP, Li T, Qin X, Tian J, Zhang L, Shao M (2021) Recent advances in catalyst structure and composition engineering strategies for regulating CO2 electrochemical reduction. Adv Mater 33(50):2005484

    Article  CAS  Google Scholar 

  • Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M (2022) Recent advances in direct air capture by adsorption. Chem Soc Rev 51:6574

    Article  CAS  Google Scholar 

  • Zimmermann AW, Wunderlich J, Müller L, Buchner GA, Marxen A, Michailos S, Armstrong K, Naims H, McCord S, Styring P (2020) Techno-economic assessment guidelines for CO2 utilization. Front Energy Res 8:5

    Article  Google Scholar 

  • Zou YH, Huang YB, Si DH, Yin Q, Wu QJ, Weng Z, Cao R (2021) Porous metal–organic framework liquids for enhanced CO2 adsorption and catalytic conversion. Angew Chem 133(38):21083–21088

    Article  Google Scholar 

  • Zuo L, Benson SM (2014) Process-dependent residual trapping of CO2 in sandstone. Geophys Res Lett 41(8):2820–2826

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Key Research and Development Program of China (No. 2018YFB0606104).

Funding

The work was financially supported by National Key Research and Development Program of China (No. 2018YFB0606104).

Author information

Authors and Affiliations

Authors

Contributions

MS, HZ, and FK: conceptualization, formal analysis, writing-reviewing and editing; LT: data curation, visualization, writing-original draft preparation, supervision; SY & CL & PZ and LW: Writing-reviewing and editing; YD: Formal analysis, writing reviewing and editing. The author(s) read and approved the final manuscripts.

Corresponding authors

Correspondence to Lige Tong, Shaowu Yin, Li Wang or Yulong Ding.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Hu, Z., Kong, F. et al. Comprehensive technology and economic evaluation based on the promotion of large-scale carbon capture and storage demonstration projects. Rev Environ Sci Biotechnol 22, 823–885 (2023). https://doi.org/10.1007/s11157-023-09662-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-023-09662-3

Keywords

Navigation