Skip to main content

Advertisement

Log in

Clinical and molecular impact of concurrent thyroid autoimmune disease and thyroid cancer: From the bench to bedside

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The recent incorporation of immune checkpoint inhibitors targeting the PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways into the therapeutic armamentarium of cancer has increased the need to understand the correlation between the immune system, autoimmunity, and malignant neoplasms. Both autoimmune thyroid diseases and thyroid cancer are common clinical conditions. The molecular pathology of autoimmune thyroid diseases is characterized by the important impact of the PD-1/PD-L1 axis, an important inhibitory pathway involved in the regulation of T-cell responses. Insufficient inhibitory pathways may prone the thyroid tissue to a self-destructive immune response that leads to hypothyroidism. On the other hand, the PD-1/PD-L1 axis and other co-inhibitory pathways are the cornerstones of the immune escape mechanisms in thyroid cancer, which is a mechanism through which the immune response fails to recognize and eradicate thyroid tumor cells. This common mechanism raises the idea that thyroid autoimmunity and thyroid cancer may be opposite sides of the same coin, meaning that both conditions share similar molecular signatures. When associated with thyroid autoimmunity, thyroid cancer may have a less aggressive presentation, even though the molecular explanation of this clinical consequence is unclear. More studies are warranted to elucidate the molecular link between thyroid autoimmune disease and thyroid cancer. The prognostic impact that thyroid autoimmune disease, especially chronic lymphocytic thyroiditis, may exert on thyroid cancer raises important insights that can help physicians to better individualize the management of patients with thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Le Coulant P, Leuret JP, Texier L, Kermarec J, Maleville J, Aubertin J. A case of systemic amyloidosis with plasma cell infiltration and secondary epithelioma of the liver. Presse Med. 1893;68:820–822.

  2. Korniluk A, Koper O, Kemona H, Dymicka-Piekarska V. From inflammation to cancer. Ir J Med Sci. 2017;186(1):57–62. https://doi.org/10.1007/s11845-016-1464-0.

    Article  CAS  PubMed  Google Scholar 

  3. Abbott M, Ustoyev Y. Cancer and the Immune System: The History and Background of Immunotherapy. Semin Oncol Nurs. 2019;35(5): 150923. https://doi.org/10.1016/j.soncn.2019.08.002.

    Article  PubMed  Google Scholar 

  4. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018;32(19–20):1267–84. https://doi.org/10.1101/GAD.314617.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Loose D, Van De Wiele C. The immune system and cancer. Cancer Biother Radiopharm. 2009;24(3):369–76. https://doi.org/10.1089/cbr.2008.0593.

    Article  CAS  PubMed  Google Scholar 

  6. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. 2021;21(6):345–59. https://doi.org/10.1038/s41568-021-00347-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sakowska J, et al. Autoimmunity and Cancer—Two Sides of the Same Coin. Front Immunol. 2022;13(May):1–22. https://doi.org/10.3389/fimmu.2022.793234.

    Article  CAS  Google Scholar 

  8. De Sousa Linhares A, Leitner J, Grabmeier-Pfistershammer K, Steinberger P. Not All Immune Checkpoints Are Created Equal. Front Immunol. 2018;9:1–15, 2018. https://doi.org/10.3389/fimmu.2018.01909.

  9. Ceccarelli F, Agmon-Levin N, Perricone C. Genetic Factors of Autoimmune Diseases 2017. J Immunol Res. 2017. Hindawi. https://doi.org/10.1155/2017/2789242.

  10. Schmidt J et al. Neoantigen-specific CD8 T cells with high structural avidity preferentially reside in and eliminate tumors. Nat Commun. 2023;14(1). https://doi.org/10.1038/s41467-023-38946-z.

  11. Hu X, et al. Cancer Risk in Hashimoto’s Thyroiditis: a Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2022;13(July):1–10. https://doi.org/10.3389/fendo.2022.937871.

    Article  Google Scholar 

  12. Quaglino P, et al. Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: Results from a single-institution hospital-based observational cohort study. Ann Oncol. 2010;21(2):409–14. https://doi.org/10.1093/annonc/mdp325.

    Article  CAS  PubMed  Google Scholar 

  13. Boi F, Pani F, Mariotti S. Thyroid Autoimmunity and Thyroid Cancer: Review Focused on Cytological Studies. European Thyroid Journal. 2017;6(4):178–86. https://doi.org/10.1159/000468928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hua C, et al. Association of Vitiligo With Tumor Response in Patients With Metastatic Melanoma Treated With Pembrolizumab. JAMA dermatology. 2016;152(1):45–51. https://doi.org/10.1001/jamadermatol.2015.2707.

    Article  PubMed  Google Scholar 

  15. Hu X, Chen Y, Shen Y, Tian R, Sheng Y, Que H. Global prevalence and epidemiological trends of Hashimoto’s thyroiditis in adults: A systematic review and meta-analysis. Front Public Heal. 2022;10. https://doi.org/10.3389/fpubh.2022.1020709.

  16. Ragusa F, et al. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab. 2019;33(6): 101367. https://doi.org/10.1016/j.beem.2019.101367.

    Article  PubMed  Google Scholar 

  17. Diab N et al. Prevalence and Risk Factors of Thyroid Dysfunction in Older Adults in the Community. Sci Rep. 2019;9(1):13156. https://doi.org/10.1038/s41598-019-49540-z.

  18. Hollowell JG, et al. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99. https://doi.org/10.1210/jcem.87.2.8182.

    Article  CAS  PubMed  Google Scholar 

  19. Garmendia Madariaga A, Santos Palacios S, Guillén-Grima F, Galofré JC. The incidence and prevalence of thyroid dysfunction in Europe: A meta-analysis. J Clin Endocrinol Metab. 2014;99(3):923–931. https://doi.org/10.1210/jc.2013-2409.

  20. Mendes D, Alves C, Silverio N, Marques FB. Prevalence of Undiagnosed Hypothyroidism in Europe: A Systematic Review and Meta-Analysis. Eur Thyroid J. 2019;8(3):130–43. https://doi.org/10.1159/000499751.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ralli M, et al. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev. 2020;19(10): 102649. https://doi.org/10.1016/j.autrev.2020.102649.

    Article  CAS  PubMed  Google Scholar 

  22. Bery AI, Shepherd HM, Li W, Krupnick AS, Gelman AE, Kreisel D. Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol Life Sci. 2022;79(7):1–18. https://doi.org/10.1007/s00018-022-04388-x.

    Article  CAS  Google Scholar 

  23. Ferrari SM, et al. Chemokines in thyroid autoimmunity. Best Pract Res Clin Endocrinol Metab. 2023;37(2):101773. https://doi.org/10.1016/j.beem.2023.101773.

  24. Álvarez-Sierra D, et al. Analysis of the PD-1/PD-L1 axis in human autoimmune thyroid disease: Insights into pathogenesis and clues to immunotherapy associated thyroid autoimmunity. J Autoimmun. 2019;103:102285. https://doi.org/10.1016/j.jaut.2019.05.013.

  25. Zhang S, Wang L, Li M, Zhang F, Zeng X. The PD-1/PD-L pathway in rheumatic diseases. J Formos Med Assoc. 2021;120(1 Pt 1):48–59. https://doi.org/10.1016/j.jfma.2020.04.004.

    Article  CAS  PubMed  Google Scholar 

  26. Álvarez-Sierra D, et al. Lymphocytic Thyroiditis Transcriptomic Profiles Support the Role of Checkpoint Pathways and B Cells in Pathogenesis. Thyroid. 2022;32(6):682–93. https://doi.org/10.1089/thy.2021.0694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salazar-Viedma M, Vergaño-Salazar JG, Pastenes L, D’Afonseca V. Simulation Model for Hashimoto Autoimmune Thyroiditis Disease. Endocrinol (United States). 2021;162. https://doi.org/10.1210/endocr/bqab190.

  28. McLachlan SM, Rapoport B. Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid. 2013;23(1):14–24. https://doi.org/10.1089/thy.2012.0374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franco JS, Amaya-Amaya J, Anaya JM. Thyroid disease and autoimmune diseases. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et al., editors. Autoimmunity: From Bench to Bedside [Internet]. Bogota (Colombia): El Rosario University Press; 2013 Jul 18. Chapter 30. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459466/.

  30. Kaykhaein MA, et al. Association of CTLA4 (rs4553808) and PTPN22 (rs2476601) gene polymorphisms with Hashimoto’s thyroiditis disease: A case-control study and an In-silico analysis. Meta Gene. 2020;24:100693. https://doi.org/10.1016/j.mgene.2020.100693.

  31. Aversa T, et al. Peculiarities of autoimmune thyroid diseases in children with Turner or Down syndrome: An overview. Ital J Pediatr. 2015;41(1):1–5. https://doi.org/10.1186/s13052-015-0146-2.

    Article  CAS  Google Scholar 

  32. Martínez-Hernández R, Marazuela M. MicroRNAs in autoimmune thyroid diseases and their role as biomarkers. Best Pract Res Clin Endocrinol Metab. 2023;37(2): 101741. https://doi.org/10.1016/j.beem.2023.101741.

    Article  CAS  PubMed  Google Scholar 

  33. Bernecker C, et al. MicroRNAs miR-146a1, miR-155-2, and miR-200a1 are regulated in autoimmune thyroid diseases. Thyroid. 2012;22(12):1294–5. https://doi.org/10.1089/thy.2012.0277.

    Article  CAS  PubMed  Google Scholar 

  34. Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol. 2022;12: 965231. https://doi.org/10.3389/fonc.2022.965231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thai T-H, et al. Regulation of the germinal center response by microRNA-155. Science. 2007;316(5824):604–8. https://doi.org/10.1126/science.1141229.

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka PP, et al. miR-155 exerts posttranscriptional control of autoimmune regulator (Aire) and tissue-restricted antigen genes in medullary thymic epithelial cells. BMC Genom. 2022;23(1):404. https://doi.org/10.1186/s12864-022-08631-4.

  37. Martínez-Hernández R, et al. Integrated miRNA and mRNA expression profiling identifies novel targets and pathological mechanisms in autoimmune thyroid diseases. EBioMedicine. 2019;50:329–42. https://doi.org/10.1016/j.ebiom.2019.10.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-Mediated Metastasis: Communication from a Distance. Dev Cell. 2019;49(3):347–60. https://doi.org/10.1016/j.devcel.2019.04.011.

    Article  CAS  PubMed  Google Scholar 

  39. Mirzaei R, et al. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol. 2021;358: 577640. https://doi.org/10.1016/j.jneuroim.2021.577640.

    Article  CAS  PubMed  Google Scholar 

  40. Chaudhari P, Ghate V, Nampoothiri M, Lewis S. Multifunctional role of exosomes in viral diseases: From transmission to diagnosis and therapy. Cell Signal. 2022;94: 110325. https://doi.org/10.1016/j.cellsig.2022.110325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dai J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5(1):145. https://doi.org/10.1038/s41392-020-00261-0.

  42. Rodríguez-Muñoz A, et al. Circulating microvesicles regulate treg and Th17 differentiation in human autoimmune thyroid disorders. J Clin Endocrinol Metab. 2015;100(12):E1531–9. https://doi.org/10.1210/jc.2015-3146.

    Article  PubMed  Google Scholar 

  43. Rodríguez-Muñoz A, et al. Circulating Microvesicles Regulate Treg and Th17 Differentiation in Human Autoimmune Thyroid Disorders. J Clin Endocrinol Metab. 2015;100(12):E1531-9. https://doi.org/10.1210/jc.2015-3146.

    Article  PubMed  Google Scholar 

  44. Boi F, Lai ML, Marziani B, Minerba L, Faa G, Mariotti S. High prevalence of suspicious cytology in thyroid nodules associated with positive thyroid autoantibodies. Eur J Endocrinol. 2005;153(5):637–42. https://doi.org/10.1530/eje.1.02020.

    Article  CAS  PubMed  Google Scholar 

  45. Lisboa Souza S, Vera Montalli da Assumpçêo L, Sterian Ward L. Impact of previous thyroid autoimmune diseases on prognosis of patients with well-differentiated thyroid cancer. Thyroid. 2003;13(5)491–495. https://doi.org/10.1089/105072503322021160.

  46. Mussa A, Matarazzo P, Corrias A. Papillary thyroid cancer and autoimmune polyglandular syndrome. J Pediatr Endocrinol Metab. 2015;28(7–8):793–5. https://doi.org/10.1515/jpem-2014-0268.

    Article  PubMed  Google Scholar 

  47. Keefe G, et al. Autoimmune Thyroiditis and Risk of Malignancy in Children with Thyroid Nodules. Thyroid. 2022;32(9):1109–17. https://doi.org/10.1089/thy.2022.0241.

    Article  CAS  PubMed  Google Scholar 

  48. Januś D, et al. Ultrasound, laboratory and histopathological insights in diagnosing papillary thyroid carcinoma in a paediatric population: a single centre follow-up study between 2000–2022. Front Endocrinol (Lausanne). 2023;14(May):1–17. https://doi.org/10.3389/fendo.2023.1170971.

    Article  Google Scholar 

  49. Januś D, et al. Ultrasound evolution of parenchymal changes in the thyroid gland with autoimmune thyroiditis in children prior to the development of papillary thyroid carcinoma – a follow-up study. Front Endocrinol (Lausanne). 2023;14(April):1–13. https://doi.org/10.3389/fendo.2023.1172823.

    Article  Google Scholar 

  50. Dailey ME, Lindsay S, Skahen R. RELATION OF THYROID NEOPLASMS TO HASHIMOTO DISEASE OF THE THYROID GLAND. AMA Arch Surg. 1955;70(2):291–7. https://doi.org/10.1001/archsurg.1955.01270080137023.

    Article  CAS  PubMed  Google Scholar 

  51. Holm L-E, Blomgren H, Löwhagen T. Cancer Risks in Patients with Chronic Lymphocytic Thyroiditis. N Engl J Med. 1985;312(10):601–4. https://doi.org/10.1056/NEJM198503073121001.

    Article  CAS  PubMed  Google Scholar 

  52. Oh CM, et al. Increased prevalence of chronic lymphocytic thyroiditis in Korean patients with papillary thyroid cancer. PLoS One. 2014;9(6). https://doi.org/10.1371/journal.pone.0099054.

  53. Lee JH, Kim Y, Choi JW, Kim YS. The association between papillary thyroid carcinoma and histologically proven Hashimoto’s thyroiditis: A meta-analysis. Eur J Endocrinol. 2013;168(3):343–9. https://doi.org/10.1530/EJE-12-0903.

    Article  CAS  PubMed  Google Scholar 

  54. Cunha LL, Ward LS. Concurrent lymphocytic thyroiditis is associated to less aggressive papillary thyroid carcinomas. Eur Arch Oto-Rhino-Laryngology. 2012;269(2):699–700. https://doi.org/10.1007/s00405-011-1764-y.

    Article  Google Scholar 

  55. Marotta V, et al. Hashimoto’s thyroiditis predicts outcome in intrathyroidal papillary thyroid cancer. Endocr Relat Cancer. 2017;24(9):485–93. https://doi.org/10.1530/ERC-17-0085.

    Article  CAS  PubMed  Google Scholar 

  56. Xu S, et al. Prevalence of Hashimoto Thyroiditis in Adults With Papillary Thyroid Cancer and Its Association With Cancer Recurrence and Outcomes. JAMA Netw Open. 2021;4(7):e2118526. https://doi.org/10.1001/jamanetworkopen.2021.18526.

  57. Babli S, Payne RJ, Mitmaker E, Rivera J. Effects of chronic lymphocytic thyroiditis on the clinicopathological features of papillary thyroid cancer. Eur Thyroid J. 2018;7(2):95–101. https://doi.org/10.1159/000486367.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee I, Kim HK, Soh EY, Lee J. The Association Between Chronic Lymphocytic Thyroiditis and the Progress of Papillary Thyroid Cancer. World J Surg. 2020;44(5):1506–13. https://doi.org/10.1007/s00268-019-05337-9.

    Article  PubMed  Google Scholar 

  59. Osborne D, et al. Hashimoto’s Thyroiditis Effects on Papillary Thyroid Carcinoma Outcomes: A Systematic Review. Cureus. 2022;14(8). https://doi.org/10.7759/cureus.28054.

  60. Hanege FM, Tuysuz O, Celik S, Sakallıoglu O, Solmaz OA. Hashimoto’s thyroiditis in papillary thyroid carcinoma: A 22-year study. Acta Otorhinolaryngol Ital. 2021;41(2):142–5. https://doi.org/10.14639/0392-100X-N1081.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Min Y, et al. Preoperatively Predicting the Central Lymph Node Metastasis for Papillary Thyroid Cancer Patients With Hashimoto’s Thyroiditis. Front Endocrinol (Lausanne). 2021;12(July):1–11. https://doi.org/10.3389/fendo.2021.713475.

    Article  Google Scholar 

  62. Dong S, Xia Q, Wu YJ. High TPOAb levels (> 1300 IU/mL) indicate multifocal PTC in Hashimoto’s thyroiditis patients and support total thyroidectomy. Otolaryngol Head Neck Surg. 2015;153(1):20-6. https://doi.org/10.1177/0194599815581831.

  63. Ward LS, Scheffel RS, Hoff AO, Ferraz C, Vaisman F. Treatment strategies for low-risk papillary thyroid carcinoma: a position statement from the Thyroid Department of the Brazilian Society of Endocrinology and Metabolism (SBEM). Arch Endocrinol Metabolism. 2022;66(4):522–532, 2022. Brazil. https://doi.org/10.20945/2359-3997000000512.

  64. Ernaga-Lorea A, et al. Prognostic value of change in anti-thyroglobulin antibodies after thyroidectomy in patients with papillary thyroid carcinoma. Clin Transl Oncol Off Publ Fed Spanish Oncol Soc Natl Cancer Inst Mex. 2018;20(6):740–744. https://doi.org/10.1007/s12094-017-1782-3.

  65. Chiovato L, et al. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 2003;139(5 Pt 1):346–51. https://doi.org/10.7326/0003-4819-139-5_part_1-200309020-00010.

    Article  CAS  PubMed  Google Scholar 

  66. Kim WG, et al. Change of serum antithyroglobulin antibody levels is useful for prediction of clinical recurrence in thyroglobulin-negative patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2008;93(12):4683–9. https://doi.org/10.1210/jc.2008-0962.

    Article  CAS  PubMed  Google Scholar 

  67. Spencer C, Fatemi S. Thyroglobulin antibody (TgAb) methods - Strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2013;27(5):701–12. https://doi.org/10.1016/j.beem.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  68. Tsushima Y, et al. Prognostic significance of changes in serum thyroglobulin antibody levels of pre- and post-total thyroidectomy in thyroglobulin antibody-positive papillary thyroid carcinoma patients. Endocr J. 2013;60(7):871–6. https://doi.org/10.1507/endocrj.ej12-0410.

    Article  CAS  PubMed  Google Scholar 

  69. Yamada O, et al. Changes in serum thyroglobulin antibody levels as a dynamic prognostic factor for early-phase recurrence of thyroglobulin antibody-positive papillary thyroid carcinoma after total thyroidectomy. Endocr J. 2014;61(10):961–5. https://doi.org/10.1507/endocrj.ej14-0275.

    Article  CAS  PubMed  Google Scholar 

  70. Hsieh C-J, Wang P-W. Sequential changes of serum antithyroglobulin antibody levels are a good predictor of disease activity in thyroglobulin-negative patients with papillary thyroid carcinoma. Thyroid. 2014;24(3):488–93. https://doi.org/10.1089/thy.2012.0611.

    Article  CAS  PubMed  Google Scholar 

  71. Görges R, et al. Development and clinical impact of thyroglobulin antibodies in patients with differentiated thyroid carcinoma during the first 3 years after thyroidectomy. Eur J Endocrinol. 2005;153(1):49–55. https://doi.org/10.1530/eje.1.01940.

    Article  CAS  PubMed  Google Scholar 

  72. Zavala LF, et al. In properly selected patients with differentiated thyroid cancer, antithyroglobulin antibodies decline after thyroidectomy and their sole presence should not be an indication for radioiodine ablation. Arch Endocrinol Metab. 2019;63(3):293–9. https://doi.org/10.20945/2359-3997000000123.

    Article  PubMed  PubMed Central  Google Scholar 

  73. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Heal. 2020;8(2):e180–90. https://doi.org/10.1016/S2214-109X(19)30488-7.

    Article  Google Scholar 

  74. Blackard JT, Kong L, Huber AK, Tomer Y. Hepatitis C virus infection of a thyroid cell line: Implications for pathogenesis of hepatitis C virus and thyroiditis. Thyroid. 2013;23(7):863–70. https://doi.org/10.1089/thy.2012.0507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Akeno N, Blackard JT, Tomer Y. HCV E2 protein binds directly to thyroid cells and induces IL-8 production: A new mechanism for HCV induced thyroid autoimmunity. J Autoimmun. 2008;31(4):339–44. https://doi.org/10.1016/j.jaut.2008.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liotti F, et al. Interleukin-8, but not the Related Chemokine CXCL1, Sustains an Autocrine Circuit Necessary for the Properties and Functions of Thyroid Cancer Stem Cells. Stem Cells. 2017;35(1):135–46. https://doi.org/10.1002/stem.2492.

    Article  CAS  PubMed  Google Scholar 

  77. Leite JL, Bufalo NE, Santos RB, Romaldini JH, Ward LS. Herpesvirus type 7 infection may play an important role in individuals with a genetic profile of susceptibility to Graves’ disease. Eur J Endocrinol. 2010;162(2):315–21. https://doi.org/10.1530/EJE-09-0719.

    Article  CAS  PubMed  Google Scholar 

  78. Almeida JFM, et al. Investigation on the association between thyroid tumorigeneses and herpesviruses. J Endocrinol Invest. 2017;40(8):823–9. https://doi.org/10.1007/s40618-017-0609-y.

    Article  CAS  PubMed  Google Scholar 

  79. Assaad SN, Meheissen MA, Elsayed ET, Alnakhal SN, Salem TM. Study of Epstein–Barr virus serological profile in Egyptian patients with Hashimoto’s thyroiditis: A case-control study. J Clin Transl Endocrinol. 2020;20:100222. https://doi.org/10.1016/j.jcte.2020.100222.

  80. Almeida JFM, et al. Epstein–Barr virus induces morphological and molecular changes in thyroid neoplastic cells. Endocrine. 2020;69(2):321–30. https://doi.org/10.1007/s12020-020-02253-0.

    Article  CAS  PubMed  Google Scholar 

  81. Cunha LL, et al. Infiltration of a mixture of immune cells may be related to good prognosis in patients with differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 2012;77(6):918–25. https://doi.org/10.1111/j.1365-2265.2012.04482.x.

    Article  CAS  PubMed  Google Scholar 

  82. Sulaieva O, Selezniov O, Shapochka D, Belemets N. Heliyon Hashimoto ’ s thyroiditis attenuates progression of papillary thyroid carcinoma : deciphering immunological links. Heliyon. 2020;6:e03077. https://doi.org/10.1016/j.heliyon.2019.e03077.

  83. Cunha LL, et al. CD8+ tumour-infiltrating lymphocytes and COX2 expression may predict relapse in differentiated thyroid cancer. Clin Endocrinol (Oxf). 2015;83(2):246–53. https://doi.org/10.1111/cen.12586.

    Article  CAS  PubMed  Google Scholar 

  84. Vitales-Noyola M, et al. Pathogenic Th17 and Th22 cells are increased in patients with autoimmune thyroid disorders. Endocrine. 2017;57(3):409–17. https://doi.org/10.1007/s12020-017-1361-y.

    Article  CAS  PubMed  Google Scholar 

  85. Guan LJ, et al. Increased IL-21/IL-21R expression and its proinflammatory effects in autoimmune thyroid disease. Cytokine. 2015;72(2):160–165. https://doi.org/10.1016/j.cyto.2014.11.005.

  86. Zake T, Skuja S, Kalere I, Konrade I, Groma V. Heterogeneity of tissue IL-17 and tight junction proteins expression demonstrated in patients with autoimmune thyroid diseases. Med (United States). 2018;97(25):1–6. https://doi.org/10.1097/MD.0000000000011211.

    Article  CAS  Google Scholar 

  87. Cunha LL, et al. RORγt may Influence the Microenvironment of Thyroid Cancer Predicting Favorable Prognosis. Sci Rep. 2020;10(1):1–12. https://doi.org/10.1038/s41598-020-60280-3.

    Article  CAS  Google Scholar 

  88. Zeng R, et al. Positive effect of RORγt on the prognosis of thyroid papillary carcinoma patients combined with hashimoto’s thyroiditis. Am J Transl Res. 2018;10(10):3011–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Heidari Z, et al. Association of IL-1 β, NLRP3, and COX-2 Gene Polymorphisms with Autoimmune Thyroid Disease Risk and Clinical Features in the Iranian Population. Biomed Res Int. 2021;2021. https://doi.org/10.1155/2021/7729238.

  90. Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen. 2019;39:12. https://doi.org/10.1186/s41232-019-0101-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med. 2020;217(1). https://doi.org/10.1084/jem.20190314.

  92. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1). https://doi.org/10.1038/s41392-021-00507-5.

  93. Babamale AO, Chen ST. Nod-like receptors: Critical intracellular sensors for host protection and cell death in microbial and parasitic infections. Int J Mol Sci. 2021;22(21). https://doi.org/10.3390/ijms222111398.

  94. Guo Q, et al. Cytokine Secretion and Pyroptosis of Thyroid Follicular Cells Mediated by Enhanced NLRP3, NLRP1, NLRC4, and AIM2 Inflammasomes Are Associated With Autoimmune Thyroiditis. Front Immunol. 2018;9:1197. https://doi.org/10.3389/fimmu.2018.01197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu P, Shi J, Sun W, Zhang H. Identification and validation of a pyroptosis-related prognostic signature for thyroid cancer. Cancer Cell Int. 2021;21(1):1–16. https://doi.org/10.1186/s12935-021-02231-0.

    Article  CAS  Google Scholar 

  96. Sheils OM, O’Leary JJ, Uhlmann V, Lüttich K, Sweeney EC. ret/PTC-1 activation in Hashimoto thyroiditis. Int J Surg Pathol. 2000;8(3):185–9. https://doi.org/10.1177/106689690000800305.

    Article  CAS  PubMed  Google Scholar 

  97. Mechler C, et al. Papillary thyroid carcinoma: 6 Cases from 2 families with associated lymphocytic thyroiditis harbouring RET/PTC rearrangements. Br J Cancer. 2001;85(12):1831–7. https://doi.org/10.1054/bjoc.2001.2187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang L, Zhou L, Feng Q, Li Q, Ge M. Mutation of Hashimoto’s Thyroiditis and Papillary Thyroid Carcinoma Related Genes and the Screening of Candidate Genes. Front Oncol. 2021;11(December):1–11. https://doi.org/10.3389/fonc.2021.813802.

    Article  CAS  Google Scholar 

  99. Liu C, Pan Y, Li Q, Zhang Y. Bioinformatics analysis identified shared differentially expressed genes as potential biomarkers for hashimoto’s thyroiditis-related papillary thyroid cancer. Int J Med Sci. 2021;18(15):3478–87. https://doi.org/10.7150/ijms.63402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dong H, et al. Lactoferrin-containing immunocomplex mediates antitumor effects by resetting tumor-associated macrophages to M1 phenotype. J Immunother Cancer. 2020;8(1). https://doi.org/10.1136/jitc-2019-000339.

  101. Afeltra A, Paggi A, De Rosa FG, Manfredini P, Addessi MA, Amoroso A. Antineutrophil cytoplasmic antibodies in autoimmune thyroid disorders. Endocr Res. 1998;24(2):185–94. https://doi.org/10.1080/07435809809135527.

    Article  CAS  PubMed  Google Scholar 

  102. Chen J, Cao H, Lian M, Fang J. Five genes influenced by obesity may contribute to the development of thyroid cancer through the regulation of insulin levels. PeerJ. 2020;8:1–12. https://doi.org/10.7717/peerj.9302.

    Article  Google Scholar 

  103. Sancho M, et al. Expression and function of the chemokine receptor CCR7 in thyroid carcinomas. J Endocrinol. 2006;191(1):229–38. https://doi.org/10.1677/joe.1.06688.

    Article  CAS  PubMed  Google Scholar 

  104. Sulaieva O, et al. Hashimoto’s thyroiditis attenuates progression of papillary thyroid carcinoma: deciphering immunological links. Heliyon. 2020;6(1):1–21. https://doi.org/10.1016/j.heliyon.2019.e03077.

    Article  Google Scholar 

  105. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9.

    Article  CAS  PubMed  Google Scholar 

  106. Gao N, et al. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Front Oncol. 2020;10(December):1–13. https://doi.org/10.3389/fonc.2020.598817.

    Article  Google Scholar 

  107. O’Brien J, Hayder H. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:1–12. https://doi.org/10.3389/fendo.2018.00402.

    Article  Google Scholar 

  108. Liu Y, et al. Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat Commun. 2019;10(1):1637. https://doi.org/10.1038/s41467-019-09649-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang Y, Tian Y. Comprehensive analysis of lncRNA-mediated ceRNA regulatory networks and key genes associated with papillary thyroid cancer coexistent with Hashimoto’s thyroiditis. BMC Endocr Disord. 2022;22(1):1–11. https://doi.org/10.1186/s12902-022-01173-6.

    Article  CAS  Google Scholar 

  110. Dasgupta S, Chakrabarti S, Mandal PK, Das S. Hashimoto’s Thyroiditis and Medullary Carcinoma of Thyroid. JNMA J Nepal Med Assoc. 2014;52(194):831–3.

    Article  CAS  PubMed  Google Scholar 

  111. Weiss LM, Weinberg DS, Warhol MJ. Medullary carcinoma arising in a thyroid with Hashimoto’s disease. Am J Clin Pathol. 1983;80(4):534–8. https://doi.org/10.1093/ajcp/80.4.534.

    Article  CAS  PubMed  Google Scholar 

  112. De Pasquale L, Sommaruga L, Andreani S, Bastagli A. Hashimoto’s thyroiditis and medullary carcinoma in the same gland: a purely random occurrence? Chir Ital. 2004;56(4):557–62.

    PubMed  Google Scholar 

  113. Mousa U, Gursoy A, Ozdemir H, Moray G. Medullary thyroid carcinoma in a patient with Hashimoto’s thyroiditis diagnosed by calcitonin washout from a thyroid nodule. Diagn Cytopathol. 2013;41(7):644–6. https://doi.org/10.1002/dc.21850.

    Article  PubMed  Google Scholar 

  114. SamieeRad F, Emami A. Synchronous Occurrence of Papillary Thyroid Carcinoma and Medullary Carcinoma in the Setting of Hashimoto’s Thyroiditis and Multi Nodular Goiter. Iran J Pathol. 2022;27(1):91–6. https://doi.org/10.30699/ijp.2021.527288.2606.

    Article  Google Scholar 

  115. Abdullah AM, Ali RM, Salih KM, Mohammed KK, Kakamad FH, Salih AM. Synchronous occurrence of papillary thyroid microcarcinoma, medullary thyroid carcinoma and Hashimoto thyroiditis in a single thyroid: A case report with literature review. Int J Surg Case Rep. 2022;93:106888. https://doi.org/10.1016/j.ijscr.2022.106888.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zayed AA, et al. Is Hashimoto’s thyroiditis a risk factor for medullary thyroid carcinoma? Our experience and a literature review. Endocrine. 2015;48(2):629–36. https://doi.org/10.1007/s12020-014-0363-2.

    Article  CAS  PubMed  Google Scholar 

  117. Ma R, Morshed SA, Latif R, Davies TF. A Stem Cell Surge During Thyroid Regeneration. Front Endocrinol (Lausanne). 2021;11(January):1–11. https://doi.org/10.3389/fendo.2020.606269.

    Article  Google Scholar 

  118. Davies TF, Latif R, Minsky NC, Ma R. Clinical review: The emerging cell biology of thyroid stem cells. J Clin Endocrinol Metab. 2011;96(9):2692–702. https://doi.org/10.1210/jc.2011-1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu W, Hai T, Ye L, Cote GJ. Medullary thyroid carcinoma cell lines contain a self-renewing CD133+ population that is dependent on ret proto-oncogene activity. J Clin Endocrinol Metab. 2010;95(1):439–44. https://doi.org/10.1210/jc.2009-1485.

    Article  CAS  PubMed  Google Scholar 

  120. Singh B, Shaha AR, Trivedi H, Carew JF, Poluri A, Shah JP. Coexistent Hashimoto’s thyroiditis with papillary thyroid carcinoma: impact on presentation, management, and outcome. Surgery. 1999;126(6):1070–7. https://doi.org/10.1067/msy.2099.101431.

    Article  CAS  PubMed  Google Scholar 

  121. Huang B-Y, Hseuh C, Chao T-C, Lin K-J, Lin J-D. Well-differentiated thyroid carcinoma with concomitant Hashimoto’s thyroiditis present with less aggressive clinical stage and low recurrence. Endocr Pathol. 2011;22(3):144–9. https://doi.org/10.1007/s12022-011-9164-9.

    Article  PubMed  Google Scholar 

  122. Kashima K, et al. Chronic thyroiditis as a favorable prognostic factor in papillary thyroid carcinoma. Thyroid. 1998;8(3):197–202. https://doi.org/10.1089/thy.1998.8.197.

    Article  CAS  PubMed  Google Scholar 

  123. Kim EY, et al. Coexistence of chronic lymphocytic thyroiditis is associated with lower recurrence rates in patients with papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2009;71(4):581–6. https://doi.org/10.1111/j.1365-2265.2009.03537.x.

    Article  PubMed  Google Scholar 

  124. Song E, et al. Influence of coexistent Hashimoto’s thyroiditis on the extent of cervical lymph node dissection and prognosis in papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2018;88(1):123–8. https://doi.org/10.1111/cen.13475.

    Article  CAS  PubMed  Google Scholar 

  125. Kwak HY, et al. Does papillary thyroid carcinoma have a better prognosis with or without Hashimoto thyroiditis? Int J Clin Oncol. 2015;20(3):463–73. https://doi.org/10.1007/s10147-014-0754-7.

    Article  CAS  PubMed  Google Scholar 

  126. Yoon Y-H, Kim HJ, Lee JW, Kim JM, Koo BS. The clinicopathologic differences in papillary thyroid carcinoma with or without co-existing chronic lymphocytic thyroiditis. Eur Arch oto-rhino-laryngology Off J Eur Fed Oto-Rhino-Laryngological Soc Affil with Ger Soc Oto-Rhino-Laryngology - Head Neck Surg. 2012;269(3):1013–7.

    Google Scholar 

  127. Jeong JS, et al. Coexistence of chronic lymphocytic thyroiditis with papillary thyroid carcinoma: clinical manifestation and prognostic outcome. J Korean Med Sci. 2012;27(8):883–9. https://doi.org/10.3346/jkms.2012.27.8.883.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Girardi FM, Barra MB, Zettler CG. Papillary thyroid carcinoma: does the association with Hashimoto’s thyroiditis affect the clinicopathological characteristics of the disease? Braz J Otorhinolaryngol. 2015;81(3):283–7. https://doi.org/10.1016/j.bjorl.2014.04.006.

    Article  PubMed  Google Scholar 

  129. Ryu YJ, Yoon JH. Chronic lymphocytic thyroiditis protects against recurrence in patients with cN0 papillary thyroid cancer. Surg Oncol. 2020;34:67–73. https://doi.org/10.1016/j.suronc.2020.03.008.

    Article  PubMed  Google Scholar 

  130. Molnár C, et al. Thyroid Carcinoma Coexisting with Hashimoto’s Thyreoiditis: Clinicopathological and Molecular Characteristics Clue up Pathogenesis. Pathol Oncol Res. 2019;25(3):1191–7. https://doi.org/10.1007/s12253-019-00580-w.

    Article  CAS  PubMed  Google Scholar 

  131. Konturek A, Barczyński M, Wierzchowski W, Stopa M, Nowak W. Coexistence of papillary thyroid cancer with Hashimoto thyroiditis. Langenbeck’s Arch Surg. 2013;398(3):389–94. https://doi.org/10.1007/s00423-012-1021-x.

    Article  Google Scholar 

  132. Liang J, et al. Clinical analysis of Hashimoto thyroiditis coexistent with papillary thyroid cancer in 1392 patients. Acta Otorhinolaryngol Ital organo Uff della Soc Ital di Otorinolaringol e Chir Cerv-facc. 2017;37(5):393–400. https://doi.org/10.14639/0392-100X-1709.

    Article  CAS  Google Scholar 

  133. Zhu F, Bin Shen Y, Li FQ, Fang Y, Wu YJ. The Effects of Hashimoto Thyroiditis on Lymph Node Metastases in Unifocal and Multifocal Papillary Thyroid Carcinoma: A Retrospective Chinese Cohort Study. Medicine (Baltimore). 2016;95(6):e2674. https://doi.org/10.1097/MD.0000000000002674.

    Article  CAS  PubMed  Google Scholar 

  134. Jara SM, et al. The relationship between chronic lymphocytic thyroiditis and central neck lymph node metastasis in North American patients with papillary thyroid carcinoma. Surgery. 2013;154(6):1272. https://doi.org/10.1016/j.surg.2013.07.021.

    Article  PubMed  Google Scholar 

  135. Zhu Y. The clinicopathologic differences of central lymph node metastasis in predicting lateral lymph node metastasis and prognosis in papillary thyroid cancer associated with or without Hashimoto’s thyroiditis. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2016;37(6):8037–45. https://doi.org/10.1007/s13277-015-4706-2.

    Article  CAS  Google Scholar 

  136. Kim KW, et al. Elevated risk of papillary thyroid cancer in Korean patients with Hashimoto’s thyroiditis. Head Neck. 2011;33(5):691–5. https://doi.org/10.1002/hed.21518.

    Article  PubMed  Google Scholar 

  137. Cappellacci F, et al. Association between hashimoto thyroiditis and differentiated thyroid cancer: A single-center experience. Front Oncol. 2022;12: 959595. https://doi.org/10.3389/fonc.2022.959595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cordioli MICV, Cury AN, Nascimento AO, de Oliveira AK, Mello M, Saieg MA. Study of the histological profile of papillary thyroid carcinomas associated with Hashimoto’s thyroiditis. Arq Bras Endocrinol Metabol. 2013;57(6):445–9. https://doi.org/10.1590/s0004-27302013000600006.

    Article  PubMed  Google Scholar 

  139. Lun Y, et al. Hashimoto’s thyroiditis as a risk factor of papillary thyroid cancer may improve cancer prognosis. Otolaryngol Neck Surg Off J Am Acad Otolaryngol Neck Surg. 2013;148(3):396–402. https://doi.org/10.1177/0194599812472426.

    Article  Google Scholar 

  140. Kurukahvecioglu O, Taneri F, Yüksel O, Aydin A, Tezel E, Onuk E. Total thyroidectomy for the treatment of Hashimoto’s thyroiditis coexisting with papillary thyroid carcinoma. Adv Ther. 2007;24(3):510–6. https://doi.org/10.1007/BF02848773.

    Article  PubMed  Google Scholar 

  141. Kim HS, Choi YJ, Yun J-S. Features of papillary thyroid microcarcinoma in the presence and absence of lymphocytic thyroiditis. Endocr Pathol. 2010;21(3):149–53. https://doi.org/10.1007/s12022-010-9124-9.

    Article  PubMed  Google Scholar 

  142. Kebebew E, Treseler PA, Ituarte PHG, Clark OH. Coexisting Chronic Lymphocytic Thyroiditis and Papillary Thyroid Cancer Revisited. World J Surg. 2001;25(5):632–7. https://doi.org/10.1007/s002680020165.

    Article  CAS  PubMed  Google Scholar 

  143. Ahn D, et al. Clinical relationship between Hashimoto’s thyroiditis and papillary thyroid cancer. Acta Oncol. 2011;50(8):1228–34. https://doi.org/10.3109/0284186X.2011.602109.

    Article  PubMed  Google Scholar 

  144. Dobrinja C, et al. Coexistence of chronic lymphocytic thyroiditis and papillary thyroid carcinoma. Impact on presentation, management, and outcome. Int J Surg. 2016;28(Suppl 1):S70-4. https://doi.org/10.1016/j.ijsu.2015.12.059.

    Article  PubMed  Google Scholar 

  145. Consorti F, Loponte M, Milazzo F, Potasso L, Antonaci A. Risk of malignancy from thyroid nodular disease as an element of clinical management of patients with Hashimoto’s thyroiditis. Eur Surg Res Eur Chir Forschung Rech Chir Eur. 2010;45(3–4):333–7. https://doi.org/10.1159/000320954.

    Article  CAS  Google Scholar 

  146. Asanuma K, Sugenoya A, Kasuga Y, Itoh N, Kobayashi S, Amano J. The relationship between multiple intrathyroidal involvement in papillary thyroid carcinoma and chronic non-specific thyroiditis. Cancer Lett. 1998;122(1–2):177–80. https://doi.org/10.1016/s0304-3835(97)00398-4.

    Article  CAS  PubMed  Google Scholar 

  147. Schäffler A, et al. Coexistent thyroiditis is associated with lower tumour stage in thyroid carcinoma. Eur J Clin Invest. 1998;28(10):838–44. https://doi.org/10.1046/j.1365-2362.1998.00363.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank FAPESP and CNPq for grants and funding for research.

Funding

This work did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.  Fundação de Amparo à Pesquisa do Estado de São Paulo, 2021/02752-6, 2021/02752-6, 2021/02752-6, 2021/02752-6, Thyroid Department, Sociedade Brasileira de Endocrinologia e Metabologia.

Author information

Authors and Affiliations

Authors

Contributions

VASV, FRB, LSW, and LLC wrote the main manuscript text, participated in conception and design, critical review of the literature and data, composition of the manuscript, and final approval. VASV prepared the figures. VASV and FRB prepared the table. LSW and LLC promoted clinical and translational orientation. VASV, FRB, and LLC prepared the selection of notable articles for review, and critical review of the literature and data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lucas Leite Cunha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Valsecchi, V.A., Betoni, F.R., Ward, L.S. et al. Clinical and molecular impact of concurrent thyroid autoimmune disease and thyroid cancer: From the bench to bedside. Rev Endocr Metab Disord 25, 5–17 (2024). https://doi.org/10.1007/s11154-023-09846-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09846-w

Keywords

Navigation