Skip to main content

Advertisement

Log in

Genetic alterations landscape in paediatric thyroid tumours and/or differentiated thyroid cancer: Systematic review

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Differentiated thyroid cancer (DTC) is a rare disease in the paediatric population (≤ 18 years old. at diagnosis). Increasing incidence is reflected by increases in incidence for papillary thyroid carcinoma (PTC) subtypes. Compared to those of adults, despite aggressive presentation, paediatric DTC has an excellent prognosis. As for adult DTC, European and American guidelines recommend individualised management, based on the differences in clinical presentation and genetic findings. Therefore, we conducted a systematic review to identify the epidemiological landscape of all genetic alterations so far investigated in paediatric populations at diagnosis affected by thyroid tumours and/or DTC that have improved and/or informed preventive and/or curative diagnostic and prognostic clinical conduct globally. Fusions involving the gene RET followed by NTRK, ALK and BRAF, were the most prevalent rearrangements found in paediatric PTC. BRAF V600E was found at lower prevalence in paediatric (especially ≤ 10 years old) than in adults PTC. We identified TERT and RAS mutations at very low prevalence in most countries. DICER1 SNVs, while found at higher prevalence in few countries, they were found in both benign and DTC. Although the precise role of DICER1 is not fully understood, it has been hypothesised that additional genetic alterations, similar to that observed for RAS gene, might be required for the malignant transformation of these nodules. Regarding aggressiveness, fusion oncogenes may have a higher growth impact compared with BRAF V600E. We reported the shortcomings of the systematized research and outlined three key recommendations for global authors to improve and inform precision health approaches, glocally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Qian ZJ, Jin MC, Meister KD, Megwalu UC. Pediatric thyroid cancer incidence and mortality trends in the United States, 1973–2013. JAMA Otolaryngol-Head Neck Surg. 2019;145:617. https://doi.org/10.1001/jamaoto.2019.0898.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hay ID, Johnson TR, Kaggal S, Reinalda MS, Iniguez-Ariza NM, Grant CS, et al. Papillary Thyroid Carcinoma (PTC) in children and adults: Comparison of initial presentation and long-term postoperative outcome in 4432 patients consecutively treated at the mayo clinic during eight decades (1936–2015). World J Surg. 2018;42:329–42. https://doi.org/10.1007/s00268-017-4279-x.

    Article  PubMed  Google Scholar 

  3. Lee YA, Jung HW, Kim HY, Choi H, Kim H-Y, Hah JH, et al. Pediatric patients with multifocal papillary thyroid cancer have higher recurrence rates than adult patients: A retrospective analysis of a large pediatric thyroid cancer cohort over 33 years. J Clin Endocrinol Metab. 2015;100:1619–29. https://doi.org/10.1210/jc.2014-3647.

    Article  CAS  PubMed  Google Scholar 

  4. Lebbink CA, Links TP, Czarniecka A, Dias RP, Elisei R, Izatt L, et al. European Thyroid Association Guidelines for the management of pediatric thyroid nodules and differentiated thyroid carcinoma. Eur Thyroid J. 2022;2022:11. https://doi.org/10.1530/ETJ-22-0146.

    Article  Google Scholar 

  5. Lazar L, Lebenthal Y, Steinmetz A, Yackobovitch-Gavan M, Phillip M. Differentiated thyroid carcinoma in pediatric patients: Comparison of presentation and course between pre-pubertal children and adolescents. J Pediatr. 2009;154:708–14. https://doi.org/10.1016/j.jpeds.2008.11.059.

    Article  PubMed  Google Scholar 

  6. Alessandri AJ, Goddard KJ, Blair GK, Fryer CJH, Schultz KR. Age is the major determinant of recurrence in pediatric differentiated thyroid carcinoma. Med Pediatr Oncol. 2000;35:41–6. https://doi.org/10.1002/1096-911X(200007)35:1%3c41::AID-MPO7%3e3.0.CO;2-7.

    Article  CAS  PubMed  Google Scholar 

  7. Liu Z, Hu D, Huang Y, Chen S, Zeng W, Zhou L, et al. Factors associated with distant metastasis in pediatric thyroid cancer: evaluation of the SEER database. Endocr Connect. 2019;8:78–85. https://doi.org/10.1530/EC-18-0441.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Redlich A, Luster M, Lorenz K, Lessel L, Rohrer TR, Schmid KW, et al. Age, American thyroid association risk group, and response to therapy are prognostic factors in children with differentiated thyroid cancer. J Clin Endocrinol Metab. 2022;107:e165–77. https://doi.org/10.1210/clinem/dgab622.

    Article  PubMed  Google Scholar 

  9. Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25:716–59. https://doi.org/10.1089/thy.2014.0460.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cordioli MICV, Moraes L, Cury AN, Cerutti JM. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocr Relat Cancer. 2015;22:R311–24. https://doi.org/10.1530/ERC-15-0381.

    Article  CAS  PubMed  Google Scholar 

  11. Pekova B, Sykorova V, Dvorakova S, Vaclavikova E, Moravcova J, Katra R, et al. RET, NTRK, ALK, BRAF, and MET fusions in a large cohort of pediatric papillary thyroid carcinomas. Thyroid. 2020;30:1771–80. https://doi.org/10.1089/THY.2019.0802.

    Article  CAS  PubMed  Google Scholar 

  12. Rangel-Pozzo A, Sisdelli L, Cordioli MIV, Vaisman F, Caria P, Mai S, et al. Genetic landscape of papillary thyroid carcinoma and nuclear architecture: an overview comparing pediatric and adult populations. Cancers (Basel). 2020;12:1–26. https://doi.org/10.3390/CANCERS12113146.

    Article  Google Scholar 

  13. Hess JR, Newbern DK, Beebe KL, Walsh AM, Schafernak KT. High prevalence of gene fusions and copy number alterations in pediatric radiation therapy-induced papillary and follicular thyroid carcinomas. Thyroid. 2022;32:411–20. https://doi.org/10.1089/THY.2021.0217.

    Article  CAS  PubMed  Google Scholar 

  14. Newfield RS, Jiang W, Sugganth DX, Hantash FM, Lee E, Newbury RO. Mutational analysis using next generation sequencing in pediatric thyroid cancer reveals BRAF and fusion oncogenes are common. Int J Pediatr Otorhinolaryngol. 2022;157. https://doi.org/10.1016/J.IJPORL.2022.111121.

  15. Mitsutake N, Saenko V. Molecular pathogenesis of pediatric thyroid carcinoma. J Radiat Res. 2021;62:I71–7. https://doi.org/10.1093/JRR/RRAA096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Perreault S, Chami R, Deyell RJ, El DD, Ellezam B, Jabado N, et al. Canadian consensus for biomarker testing and treatment of TRK fusion cancer in pediatric patients. Curr Oncol. 2021;28:346–66. https://doi.org/10.3390/CURRONCOL28010038.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Prasad PK, Mahajan P, Hawkins DS, Mostoufi-Moab S, Venkatramani R. Management of pediatric differentiated thyroid cancer: An overview for the pediatric oncologist. Pediatr Blood Cancer. 2020;67. https://doi.org/10.1002/PBC.28141.

  18. Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 2002;13:3–16. https://doi.org/10.1385/EP:13:1:03.

    Article  CAS  PubMed  Google Scholar 

  19. Zanella AB, Schefel RS, Weinert L, Dora JM, Maia AL. New insights into the management of differentiated thyroid carcinoma in children and adolescents (Review). Int J Oncol. 2021;58. https://doi.org/10.3892/IJO.2021.5193.

  20. Kickbusch I. Global + local = glocal public health. J Epidemiol Community Health. 1978;1999(53):451–2. https://doi.org/10.1136/jech.53.8.451.

    Article  Google Scholar 

  21. Kickbusch I, Leeuw E. Global public health: revisiting healthy public policy at the global level. Health Promot Int. 1999;14:285–8. https://doi.org/10.1093/heapro/14.4.285.

    Article  Google Scholar 

  22. O’Rourke B, Oortwijn W, Schuller T. The new definition of health technology assessment: A milestone in international collaboration. Int J Technol Assess Health Care. 2020;36:187–90. https://doi.org/10.1017/S0266462320000215.

    Article  PubMed  Google Scholar 

  23. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, The PRISMA, et al. statement: an updated guideline for reporting systematic reviews. BMJ. 2020;2021:n71. https://doi.org/10.1136/bmj.n71.

    Article  Google Scholar 

  24. McArthur A, Klugárová J, Yan H, Florescu S. Innovations in the systematic review of text and opinion. Int J Evid Based Healthc. 2015;13:188–95. https://doi.org/10.1097/XEB.0000000000000060.

    Article  PubMed  Google Scholar 

  25. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, et al. Chapter 7: Systematic reviews of etiology and risk. JBI Manual Evid Synth. 2020. https://doi.org/10.46658/JBIMES-20-08.

  26. Munn Z, Barker TH, Moola S, Tufanaru C, Stern C, McArthur A, et al. Methodological quality of case series studies. JBI Database Syst Rev Implement Rep. 2019. https://doi.org/10.11124/JBISRIR-D-19-00099.

  27. Barker TH, Stone JC, Sears K, Klugar M, Tufanaru C, Leonardi-Bee J, et al. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evid Synth. 2023;21:494–506. https://doi.org/10.11124/JBIES-22-00430.

    Article  PubMed  Google Scholar 

  28. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017:j4008. https://doi.org/10.1136/bmj.j4008.

  29. Sousa MSA de, Wainwright M, Soares CB. Sínteses de evidências qualitativas: guia introdutório. BIS Boletim Do Instituto de Saúde. 2020;20:7–22. https://doi.org/10.52753/BIS.V20I2.34465.

  30. Brehar AC, Terzea DC, Ioachim DL, Procopiuc C, Brehar FM, Bulgăr AC, et al. Cribriform-morular variant of papillary thyroid carcinoma at pediatric age - case report and review of the literature. Rom J Morphol Embryol. 2016;57:531–7.

    PubMed  Google Scholar 

  31. Elisei R, Romei C, Soldatenko PP, Cosci B, Vorontsova T, Vivaldi A, et al. New breakpoints in both the H4 and RET genes create a variant of PTC-1 in a post-Chernobyl papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2000;53:131–6. https://doi.org/10.1046/J.1365-2265.2000.01046.X.

    Article  CAS  PubMed  Google Scholar 

  32. Halkova T, Dvorakova S, Vaclavikova E, Sykorova V, Vcelak J, Sykorova P, et al. A novel RET/PTC variant detected in a pediatric patient with papillary thyroid cancer without ionization history. Hum Pathol. 2015;46:1962–9. https://doi.org/10.1016/J.HUMPATH.2015.08.013.

    Article  CAS  PubMed  Google Scholar 

  33. Klugbauer S, Rabes HM. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene. 1999;18:4388–93. https://doi.org/10.1038/SJ.ONC.1202824.

    Article  CAS  PubMed  Google Scholar 

  34. Kwon MJ, Rho YS, Jeong JC, Shin HS, Lee JS, Cho SJ, et al. Cribriform-morular variant of papillary thyroid carcinoma: a study of 3 cases featuring the PIK3CA mutation. Hum Pathol. 2015;46:1180–8. https://doi.org/10.1016/J.HUMPATH.2015.04.010.

    Article  PubMed  Google Scholar 

  35. Leenhardt L, Aurengo A. Post-Chernobyl thyroid carcinoma in children. Baillieres Best Pract Res Clin Endocrinol Metab. 2000;14:667–77. https://doi.org/10.1053/BEEM.2000.0109.

    Article  CAS  PubMed  Google Scholar 

  36. Macerola E, Torregrossa L, Ugolini C, Bakkar S, Vitti P, Fadda G, et al. BRAFK601E mutation in a follicular thyroid adenoma: A case report. Int J Surg Pathol. 2017;25:348–51. https://doi.org/10.1177/1066896916688083.

    Article  PubMed  Google Scholar 

  37. Machado GJR, Ramos HE. Carcinoma papilífero de tireoide pediátrico associado à fusão gênica RET-PTC6: relato de caso. Revista de Ciências Médicas e Biológicas. 2021;20:472–5. https://doi.org/10.9771/cmbio.v20i3.47096.

    Article  Google Scholar 

  38. Oler G, Nakabashi CD, Biscolla RPM, Cerutti JM. Seven-year follow-up of a juvenile female with papillary thyroid carcinoma with poor outcome, BRAF mutation and loss of expression of iodine-metabolizing genes. Arq Bras Endocrinol Metabol. 2008;52:1313–6. https://doi.org/10.1590/S0004-27302008000800017.

    Article  PubMed  Google Scholar 

  39. Otsubo R, Mussazhanova Z, Akazawa Y, Sato A, Matsuda K, Matsumoto M, et al. Sporadic pediatric papillary thyroid carcinoma harboring the ETV6/NTRK3 fusion oncogene in a 7-year-old Japanese girl: a case report and review of literature. J Pediatr Endocrinol Metab. 2018;31:461–7. https://doi.org/10.1515/JPEM-2017-0292.

    Article  PubMed  Google Scholar 

  40. Ronsley R, Rod Rassekh S, Shen Y, Lee AF, Jantzen C, Halparin J, et al. Application of genomics to identify therapeutic targets in recurrent pediatric papillary thyroid carcinoma. Cold Spring Harb Mol Case Stud. 2018;4. https://doi.org/10.1101/MCS.A002568.

  41. Stenman A, Backman S, Johansson K, Paulsson JO, Stålberg P, Zedenius J, et al. Pan-genomic characterization of high-risk pediatric papillary thyroid carcinoma. Endocr Relat Cancer. 2021;28:337–51. https://doi.org/10.1530/ERC-20-0464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tfayli HM, Teot LA, Indyk JA, Witchel SF. Papillary thyroid carcinoma in an autonomous hyperfunctioning thyroid nodule: case report and review of the literature. Thyroid. 2010;20:1029–32. https://doi.org/10.1089/THY.2010.0144.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vuong HG, Kondo T, Oishi N, Nakazawa T, Mochizuki K, Miyauchi A, et al. Paediatric follicular thyroid carcinoma - indolent cancer with low prevalence of RAS mutations and absence of PAX8-PPARG fusion in a Japanese population. Histopathology. 2017;71:760–8. https://doi.org/10.1111/HIS.13285.

    Article  PubMed  Google Scholar 

  44. Xing W, Liu X, He Q, Zhang Z, Jiang Z. BRAFV600E mutation contributes papillary thyroid carcinoma and Hashimoto thyroiditis with resistance to thyroid hormone: A case report and literature review. Oncol Lett. 2017;14:2903–11. https://doi.org/10.3892/OL.2017.6486.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schwab KO, Pfarr N, van der Werf-Grohmann N, Pohl M, Rädecke J, Musholt T, et al. Autonomous thyroid adenoma: only an adulthood disease? J Pediatr. 2009;154. https://doi.org/10.1016/J.JPEDS.2008.12.019.

  46. Buryk MA, Picarsic JL, Creary SE, Shaw PH, Simons JP, Deutsch M, et al. Identification of unique, heterozygous germline mutation, STK11 (p.F354L), in a child with an encapsulated follicular variant of papillary thyroid carcinoma within six months of completing treatment for neuroblastoma. Pediatr Dev Pathol. 2015;18:318–23. https://doi.org/10.2350/15-01-1597-CR.1.

  47. Alzahrani AS, Qasem E, Murugan AK, Al-Hindi HN, Alkhafaji D, Almohanna M, et al. Uncommon TERT promoter mutations in pediatric thyroid cancer. Thyroid. 2016;26:235–41. https://doi.org/10.1089/THY.2015.0510.

    Article  CAS  PubMed  Google Scholar 

  48. Alzahrani AS, Murugan AK, Qasem E, Alswailem M, Al-Hindi H, Shi Y. Single point mutations in pediatric differentiated thyroid cancer. Thyroid. 2017;27:189–96. https://doi.org/10.1089/THY.2016.0339.

    Article  CAS  PubMed  Google Scholar 

  49. Alzahrani AS, Alswailem M, Moria Y, Almutairi R, Alotaibi M, Murugan AK, et al. Lung metastasis in pediatric thyroid cancer: radiological pattern, molecular genetics, response to therapy, and outcome. J Clin Endocrinol Metab. 2019;104:103–10. https://doi.org/10.1210/JC.2018-01690.

    Article  PubMed  Google Scholar 

  50. Henke LE, Perkins SM, Pfeifer JD, Ma C, Chen Y, DeWees T, et al. BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer. 2014;61:1168–72. https://doi.org/10.1002/pbc.24935.

    Article  CAS  PubMed  Google Scholar 

  51. Basolo F, Giannini R, Monaco C, Melillo RM, Carlomagno F, Pancrazi M, et al. Potent mitogenicity of the RET/PTC3 oncogene correlates with its prevalence in tall-cell variant of papillary thyroid carcinoma. Am J Pathol. 2002;160:247. https://doi.org/10.1016/S0002-9440(10)64368-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beimfohr C, Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. J Cancer. 1999;80:842–7. https://doi.org/10.1002/(SICI)1097-0215(19990315)80:6.

    Article  CAS  Google Scholar 

  53. Buryk MA, Monaco SE, Witchel SF, Mehta DK, Gurtunca N, Nikiforov YE, et al. Preoperative cytology with molecular analysis to help guide surgery for pediatric thyroid nodules. Int J Pediatr Otorhinolaryngol. 2013;77:1697–700. https://doi.org/10.1016/J.IJPORL.2013.07.029.

    Article  PubMed  Google Scholar 

  54. Buryk MA, Simons JP, Picarsic J, Monaco SE, Ozolek JA, Joyce J, et al. Can malignant thyroid nodules be distinguished from benign thyroid nodules in children and adolescents by clinical characteristics? A review of 89 pediatric patients with thyroid nodules. Thyroid. 2015;25:392–400. https://doi.org/10.1089/THY.2014.0312.

    Article  CAS  PubMed  Google Scholar 

  55. Cañadas-Garre M, Becerra-Massare P, Moreno Casares A, Calleja-Hernández MÁ, Llamas-Elvira JM. Relevance of BRAF and NRAS mutations in the primary tumor and metastases of papillary thyroid carcinomas. Head Neck. 2016;38:1772–9. https://doi.org/10.1002/HED.24517.

    Article  PubMed  Google Scholar 

  56. Castro P, Patiño E, Fierro F, Rojas C, Buitrago G, Olaya N. Clinical characteristics, surgical approach, BRAFV600E mutation and sodium iodine symporter expression in pediatric patients with thyroid carcinoma. J Pediatr Endocrinol Metab. 2020;33:1457–63. https://doi.org/10.1515/JPEM-2020-0201.

    Article  CAS  PubMed  Google Scholar 

  57. Colato C, Vicentini C, Cantara S, Pedron S, Brazzarola P, Marchetti I, et al. Break-apart interphase fluorescence in situ hybridization assay in papillary thyroid carcinoma: on the road to optimizing the cut-off level for RET/PTC rearrangements. Eur J Endocrinol. 2015;172:571–82. https://doi.org/10.1530/EJE-14-0930.

    Article  CAS  PubMed  Google Scholar 

  58. Cordioli MICV, Moraes L, Bastos AU, Besson P, Alves MTDS, Delcelo R, et al. Fusion oncogenes are the main genetic events found in sporadic papillary thyroid carcinomas from children. Thyroid. 2017;27:182–8. https://doi.org/10.1089/THY.2016.0387.

    Article  CAS  PubMed  Google Scholar 

  59. Cyniak-Magierska A, Brzeziańska E, Januszkiewicz-Caulier J, Jarza̧b B, Lewiński A. Prevalence of RAS point mutations in papillary thyroid carcinoma; a novel mutation at codon 31 of K-RAS. Exp Clin Endocrinol Diabetes 2007;115:594–9. https://doi.org/10.1055/S-2007-981670.

  60. Eszlinger M, Niedziela M, Typlt E, Jaeschke H, Huth S, Schaarschmidt J, et al. Somatic mutations in 33 benign and malignant hot thyroid nodules in children and adolescents. Mol Cell Endocrinol. 2014;393:39–45. https://doi.org/10.1016/J.MCE.2014.05.023.

    Article  CAS  PubMed  Google Scholar 

  61. Gallant JN, Chen SC, Ortega CA, Rohde SL, Belcher RH, Netterville JL, et al. Evaluation of the molecular landscape of pediatric thyroid nodules and use of a multigene genomic classifier in children. JAMA Oncol. 2022;8:1323. https://doi.org/10.1001/JAMAONCOL.2022.1655.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hillebrandt S, Streffer C, Reiners C, Demidchik E. Mutations in the p53 tumour suppressor gene in thyroid tumours of children from areas contaminated by the Chernobyl accident. Int J Radiat Biol. 1996;69:39–45. https://doi.org/10.1080/095530096146165.

    Article  CAS  PubMed  Google Scholar 

  63. Iwadate M, Mitsutake N, Matsuse M, Fukushima T, Suzuki S, Matsumoto Y, et al. The clinicopathological results of thyroid cancer with BRAFV600E mutation in the young population of fukushima. J Clin Endocrinol Metab. 2020;105. https://doi.org/10.1210/CLINEM/DGAA573.

  64. Klugbauer S, Pfeiffer P, Gassenhuber H, Beimfohr C, Rabes HM. RET rearrangements in radiation-induced papillary thyroid carcinomas: high prevalence of topoisomerase I sites at breakpoints and microhomology-mediated end joining in ELE1 and RET chimeric genes. Genomics. 2001;73:149–60. https://doi.org/10.1006/GENO.2000.6434.

    Article  CAS  PubMed  Google Scholar 

  65. Kumagai A, Namba H, Saenko VA, Ashizawa K, Ohtsuru A, Ito M, et al. Low frequency of BRAFT1796A mutations in childhood thyroid carcinomas. J Clin Endocrinol Metab. 2004;89:4280–4. https://doi.org/10.1210/JC.2004-0172.

    Article  CAS  PubMed  Google Scholar 

  66. Lam KY, Lo CY, Leung PS. High prevalence of RET proto-oncogene activation (RET/PTC) in papillary thyroid carcinomas. Eur J Endocrinol. 2002;147:741–5. https://doi.org/10.1530/EJE.0.1470741.

    Article  CAS  PubMed  Google Scholar 

  67. Lee YA, Im SW, Jung KC, Chung EJ, Shin CH, Kim J Il, et al. Predominant DICER1 pathogenic variants in pediatric follicular thyroid carcinomas. Thyroid. 2020;30:1120–31. https://doi.org/10.1089/THY.2019.0233.

  68. Li Y, Wang Y, Li L, Qiu X. The clinical significance of BRAFV600E mutations in pediatric papillary thyroid carcinomas. Sci Rep. 2022;12. https://doi.org/10.1038/S41598-022-16207-1.

  69. Mian C, Barollo S, Pennelli G, Pavan N, Rugge M, Pelizzo MR, et al. Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin Endocrinol (Oxf). 2008;68:108–16. https://doi.org/10.1111/J.1365-2265.2007.03008.X.

    Article  CAS  PubMed  Google Scholar 

  70. Motomura T, Nikiforov YE, Namba H, Ashizawa K, Nagataki S, Yamashita S, et al. ret rearrangements in Japanese pediatric and adult papillary thyroid cancers. Thyroid. 1998;8:485–9. https://doi.org/10.1089/THY.1998.8.485.

    Article  CAS  PubMed  Google Scholar 

  71. Musholt TJ, Brehm C, Hanack J, Von Wasielewski R, Musholt PB. Identification of differentially expressed genes in papillary thyroid carcinomas with and without rearrangements of the tyrosine kinase receptors RET and/or NTRK1. J Surg Res. 2006;131:15–25. https://doi.org/10.1016/J.JSS.2005.08.013.

    Article  CAS  PubMed  Google Scholar 

  72. Nikiforov YE, Koshoffer A, Nikiforova M, Stringer J, Fagin JA. Chromosomal breakpoint positions suggest a direct role for radiation in inducing illegitimate recombination between the ELE1 and RET genes in radiation-induced thyroid carcinomas. Oncogene. 1999;18:6330–4. https://doi.org/10.1038/SJ.ONC.1203019.

    Article  CAS  PubMed  Google Scholar 

  73. Nikiforov YE, Nikiforova M, Fagin JA. Prevalence of minisatellite and microsatellite instability in radiation-induced post-Chernobyl pediatric thyroid carcinomas. Oncogene. 1998;17:1983–8. https://doi.org/10.1038/SJ.ONC.1202120.

    Article  CAS  PubMed  Google Scholar 

  74. Nikiforov YE, Erickson LA, Nikiforova MN, Caudill CM, Lloyd RV. Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behavior. Am J Surg Pathol. 2001;25:1478–84. https://doi.org/10.1097/00000478-200112000-00002.

    Article  CAS  PubMed  Google Scholar 

  75. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57:1690–4.

    CAS  PubMed  Google Scholar 

  76. Oishi N, Kondo T, Nakazawa T, Mochizuki K, Inoue T, Kasai K, et al. Frequent BRAF V600E and absence of TERT promoter mutations characterize sporadic pediatric papillary thyroid carcinomas in Japan. Endocr Pathol. 2017;28:103–11. https://doi.org/10.1007/S12022-017-9470-Y.

    Article  CAS  PubMed  Google Scholar 

  77. Oliveira G, Polónia A, Cameselle-Teijeiro JM, Leitão D, Sapia S, Sobrinho-Simões M, et al. EWSR1 rearrangement is a frequent event in papillary thyroid carcinoma and in carcinoma of the thyroid with Ewing family tumor elements (CEFTE). Virchows Arch. 2017;470:517–25. https://doi.org/10.1007/S00428-017-2095-1.

    Article  CAS  PubMed  Google Scholar 

  78. Onder S, Ozturk Sari S, Yegen G, Sormaz IC, Yilmaz I, Poyrazoglu S, et al. Classic architecture with multicentricity and local recurrence, and absence of TERT promoter mutations are correlates of BRAF (V600E) harboring pediatric papillary thyroid carcinomas. Endocr Pathol. 2016;27:153–61. https://doi.org/10.1007/S12022-016-9420-0.

    Article  CAS  PubMed  Google Scholar 

  79. Ory C, Ugolin N, Levalois C, Lacroix L, Caillou B, Bidart JM, et al. Gene expression signature discriminates sporadic from post-radiotherapy-induced thyroid tumors. Endocr Relat Cancer. 2011;18:193–206. https://doi.org/10.1677/ERC-10-0205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Papotti M, Volante M, Giuliano A, Fassina A, Fusco A, Bussolati G, et al. RET/PTC activation in hyalinizing trabecular tumors of the thyroid. Am J Surg Pathol. 2000;24:1615–21. https://doi.org/10.1097/00000478-200012000-00004.

    Article  CAS  PubMed  Google Scholar 

  81. Pelizzo MR, Boschin IM, Barollo S, Pennelli G, Toniato A, Zambonin L, et al. BRAF analysis by fine needle aspiration biopsy of thyroid nodules improves preoperative identification of papillary thyroid carcinoma and represents a prognostic factor. A mono-institutional experience CCLM. 2011;49:325–9. https://doi.org/10.1515/CCLM.2011.031.

    Article  CAS  PubMed  Google Scholar 

  82. Penko K, Livezey J, Fenton C, Patel A, Nicholson D, Flora M, et al. BRAF mutations are uncommon in papillary thyroid cancer of young patients. Thyroid. 2005;15:320–5. https://doi.org/10.1089/THY.2005.15.320.

    Article  CAS  PubMed  Google Scholar 

  83. Pessôa-Pereira D, Medeiros MF da S, Lima VMS, Silva JC da, Cerqueira TL de O, Silva IC da, et al. Association between BRAF (V600E) mutation and clinicopathological features of papillary thyroid carcinoma: a Brazilian single-centre case series. Arch Endocrinol Metab. 2019;63:97–106. https://doi.org/10.20945/2359-3997000000120.

  84. Pfeifer A, Rusinek D, Żebracka-Gala J, Czarniecka A, Chmielik E, Zembala-Nożyńska E, et al. Novel TG-FGFR1 and TRIM33-NTRK1 transcript fusions in papillary thyroid carcinoma. Genes Chromosomes Cancer. 2019;58:558–66. https://doi.org/10.1002/GCC.22737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pisarchik AV, Ermak G, Fomicheva V, Kartel NA, Figge J. The ret/PTC1 rearrangement is a common feature of Chernobyl-associated papillary thyroid carcinomas from Belarus. Thyroid. 1998;8:133–9. https://doi.org/10.1089/THY.1998.8.133.

    Article  CAS  PubMed  Google Scholar 

  86. Pisarchik AV, Ermak G, Demidchik EP, Mikhalevich LS, Kartel NA, Figge J. Low prevalence of the ret/PTC3r1 rearrangement in a series of papillary thyroid carcinomas presenting in Belarus ten years post-Chernobyl. Thyroid. 1998;8:1003–8. https://doi.org/10.1089/THY.1998.8.1003.

    Article  CAS  PubMed  Google Scholar 

  87. Powell N, Jeremiah S, Morishita M, Dudley E, Bethel J, Bogdanova T, et al. Frequency of BRAF T1796A mutation in papillary thyroid carcinoma relates to age of patient at diagnosis and not to radiation exposure. J Pathol. 2005;205:558–64. https://doi.org/10.1002/PATH.1736.

    Article  CAS  PubMed  Google Scholar 

  88. Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016;122:1097–107. https://doi.org/10.1002/CNCR.29887.

    Article  CAS  PubMed  Google Scholar 

  89. Rogounovitch TI, Mankovskaya SV, Fridman MV, Leonova TA, Kondratovitch VA, Konoplya NE, et al. Major oncogenic drivers and their clinicopathological correlations in sporadic childhood papillary thyroid carcinoma in belarus. Cancers (Basel). 2021;13. https://doi.org/10.3390/CANCERS13133374.

  90. Romanelli K, Wells J, Patel A, Mendonca Torres M, Costello J, Jensen K, et al. Clinical and molecular characterization of thyroid cancer when seen as a second malignant neoplasm. Ther Adv Endocrinol Metab. 2021;12. https://doi.org/10.1177/20420188211058327.

  91. Romitti M, Wajner SM, Zennig N, Goemann IM, Bueno AL, Meyer ELS, et al. Increased type 3 deiodinase expression in papillary thyroid carcinoma. Thyroid. 2012;22:897–904. https://doi.org/10.1089/THY.2012.0031.

    Article  CAS  PubMed  Google Scholar 

  92. Rossi ED, Bizzarro T, Martini M, Capodimonti S, Cenci T, Fadda G, et al. Morphological features that can predict BRAFV600E -mutated carcinoma in paediatric thyroid cytology. Cytopathology. 2016;28:55–64. https://doi.org/10.1111/CYT.12350.

    Article  PubMed  Google Scholar 

  93. Sangkhathat S, Patrapinyokul S, Chiengkriwate P, Kritsaneepaiboon S, Kayasut K, Pramphapa T, et al. Papillary carcinoma of the thyroid gland in a child of thyrotoxicosis patient receiving radioactive iodine therapy: report of a case. Pediatr Surg Int. 2008;24:747–50. https://doi.org/10.1007/S00383-008-2151-7.

    Article  PubMed  Google Scholar 

  94. Santoro M, Thomas GA, Vecchio G, Williams GH, Fusco A, Chiappetta G, et al. Gene rearrangement and Chernobyl related thyroid cancers. Br J Cancer. 2000;82:315–22. https://doi.org/10.1054/BJOC.1999.0921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sheu SY, Schwertheim S, Worm K, Grabellus F, Schmid KW. Diffuse sclerosing variant of papillary thyroid carcinoma: lack of BRAF mutation but occurrence of RET/PTC rearrangements. Mod Pathol. 2007;20:779–87. https://doi.org/10.1038/MODPATHOL.3800797.

    Article  CAS  PubMed  Google Scholar 

  96. Stosic A, Fuligni F, Anderson ND, Davidson S, de Borja R, Acker M, et al. Diverse oncogenic fusions and distinct gene expression patterns define the genomic landscape of pediatric papillary thyroid carcinoma. Cancer Res. 2021;81:5625–37. https://doi.org/10.1158/0008-5472.CAN-21-0761.

    Article  CAS  PubMed  Google Scholar 

  97. Swierniak M, Pfeifer A, Stokowy T, Rusinek D, Chekan M, Lange D, et al. Somatic mutation profiling of follicular thyroid cancer by next generation sequencing. Mol Cell Endocrinol. 2016;433:130–7. https://doi.org/10.1016/J.MCE.2016.06.007.

    Article  CAS  PubMed  Google Scholar 

  98. Unger K, Zitzelsberger H, Salvatore G, Santoro M, Bogdanova T, Braselmann H, et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J Clin Endocrinol Metab. 2004;89:4272–9. https://doi.org/10.1210/JC.2003-031870.

    Article  CAS  PubMed  Google Scholar 

  99. van der Tuin K, Ventayol Garcia M, Corver WE, Khalifa MN, Ruano Neto D, Corssmit EPM, et al. Targetable gene fusions identified in radioactive iodine refractory advanced thyroid carcinoma. Eur J Endocrinol. 2019;180:235–41. https://doi.org/10.1530/EJE-18-0653.

    Article  PubMed  Google Scholar 

  100. Vanden Borre P, Schrock AB, Anderson PM, Morris JC, Heilmann AM, Holmes O, et al. Pediatric, adolescent, and young adult thyroid carcinoma harbors frequent and diverse targetable genomic alterations. Including Kinase Fusions Oncologist. 2017;22:255–63. https://doi.org/10.1634/THEONCOLOGIST.2016-0279.

    Article  CAS  PubMed  Google Scholar 

  101. Wasserman JD, Sabbaghian N, Fahiminiya S, Chami R, Mete O, Acker M, et al. DICER1 mutations are frequent in adolescent-onset papillary thyroid carcinoma. J Clin Endocrinol Metab. 2018;103:2009–15. https://doi.org/10.1210/JC.2017-02698.

    Article  PubMed  Google Scholar 

  102. Williams GH, Rooney S, Thomas GA, Cummins G, Williams ED. RET activation in adult and childhood papillary thyroid carcinoma using a reverse transcriptase-n-polymerase chain reaction approach on archival-nested material. Br J Cancer. 1996;74:585–9. https://doi.org/10.1038/BJC.1996.405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Woodford RL, Nikiforov YE, Hunt JL, Bellizzi AM, Zhang X, Mills SE, et al. Encapsulated papillary oncocytic neoplasms of the thyroid: morphologic, immunohistochemical, and molecular analysis of 18 cases. Am J Surg Pathol. 2010;34:1582–90. https://doi.org/10.1097/PAS.0B013E3181F2D820.

    Article  PubMed  Google Scholar 

  104. Yuan X, Mu N, Wang N, Strååt K, Sofiadis A, Guo Y, et al. GABPA inhibits invasion/metastasis in papillary thyroid carcinoma by regulating DICER1 expression. Oncogene. 2019;38:965–79. https://doi.org/10.1038/S41388-018-0483-X.

    Article  CAS  PubMed  Google Scholar 

  105. Zheng X, Wang C, Xu M, Yu Y, Yun X, Jia Y, et al. Progression of solitary and multifocal papillary thyroid carcinoma - a retrospective study of 368 patients. Chin Med J (Engl). 2012;125:4434–9.

    PubMed  Google Scholar 

  106. Zheng X, Xia T, Lin L, Gao S, Lee Y, Yu Y, et al. BRAFV600E status and clinical characteristics in solitary and multiple papillary thyroid carcinoma: experience of 512 cases at a clinical center in China. World J Surg Oncol. 2012;10. https://doi.org/10.1186/1477-7819-10-104.

  107. Zurnadzhy L, Bogdanova T, Rogounovitch TI, Ito M, Tronko M, Yamashita S, et al. The BRAFV600E mutation is not a risk factor for more aggressive tumor behavior in radiogenic and sporadic papillary thyroid carcinoma at a young age. Cancers (Basel). 2021;13. https://doi.org/10.3390/CANCERS13236038.

  108. Zurnadzhy L, Bogdanova T, Rogounovitch TI, Ito M, Tronko M, Yamashita S, et al. Clinicopathological implications of the BRAF V 600 E mutation in papillary thyroid carcinoma of ukrainian patients exposed to the chernobyl radiation in childhood: A study for 30 years after the accident. Front Med (Lausanne). 2022;9. https://doi.org/10.3389/FMED.2022.882727.

  109. Pisarchik AV, Ermak G, Kartei NA, Figge J. Molecular alterations involving p53 codons 167 and 183 in papillary thyroid carcinomas from chernobyl-contaminated regions of belarus. Thyroid. 2000;10:25–30. https://doi.org/10.1089/THY.2000.10.25.

    Article  CAS  PubMed  Google Scholar 

  110. Lima J, Trovisco V, Soares P, Máximo V, Magalhães J, Salvatore G, et al. BRAF mutations are not a major event in post-chernobyl childhood thyroid carcinomas. J Clin Endocrinol Metab. 2004;89:4267–71. https://doi.org/10.1210/JC.2003-032224.

    Article  CAS  PubMed  Google Scholar 

  111. Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, et al. RET/PTC rearrangements in thyroid nodules: Studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab. 2001;86:3211–6. https://doi.org/10.1210/JCEM.86.7.7678.

    Article  CAS  PubMed  Google Scholar 

  112. Sisdelli L, Cordioli MICV, Vaisman F, Moraes L, Colozza-Gama GA, Alves PAG, et al. AGK-BRAF is associated with distant metastasis and younger age in pediatric papillary thyroid carcinoma. Pediatr Blood Cancer. 2019;66. https://doi.org/10.1002/PBC.27707.

  113. Unger K, Zurnadzhy L, Walch A, Mall M, Bogdanova T, Braselmann H, et al. RET rearrangements in post-Chernobyl papillary thyroid carcinomas with a short latency analysed by interphase FISH. Br J Cancer. 2006;94:1472–7. https://doi.org/10.1038/SJ.BJC.6603109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Alzahrani AS, Murugan AK, Qasem E, Al-Hindi H. HABP2 gene mutations do not cause familial or sporadic non-medullary thyroid cancer in a highly inbred middle eastern population. Thyroid. 2016;26:667–71. https://doi.org/10.1089/THY.2015.0537.

    Article  CAS  PubMed  Google Scholar 

  115. Alzahrani AS, Murugan AK, Qasem E, Alswailem MM, AlGhamdi B, Moria Y, et al. Absence of EIF1AX, PPM1D, and CHEK2 mutations reported in Thyroid Cancer Genome Atlas (TCGA) in a large series of thyroid cancer. Endocrine. 2019;63:94–100. https://doi.org/10.1007/S12020-018-1762-6.

    Article  CAS  PubMed  Google Scholar 

  116. Alzahrani AS, Alswailem M, Alswailem AA, Al-Hindi H, Goljan E, Alsudairy N, et al. Genetic alterations in pediatric thyroid cancer using a comprehensive childhood cancer gene panel. J Clin Endocrinol Metab. 2020;105:3324–34. https://doi.org/10.1210/CLINEM/DGAA389.

    Article  Google Scholar 

  117. Bae JS, Jung SH, Hirokawa M, Bychkov A, Miyauchi A, Lee S, et al. High prevalence of DICER1 mutations and low frequency of gene fusions in pediatric follicular-patterned tumors of the thyroid. Endocr Pathol. 2021;32:336–46. https://doi.org/10.1007/S12022-021-09688-9.

    Article  CAS  PubMed  Google Scholar 

  118. Ballester LY, Sarabia SF, Sayeed H, Patel N, Baalwa J, Athanassaki I, et al. Integrating molecular testing in the diagnosis and management of children with thyroid lesions. Pediatr Dev Pathol. 2016;19:94–100. https://doi.org/10.2350/15-05-1638-OA.1.

    Article  PubMed  Google Scholar 

  119. Chakraborty D, Shakya S, Ballal S, Agarwal S, Bal C. BRAF V600E and TERT promoter mutations in paediatric and young adult papillary thyroid cancer and clinicopathological correlation. J Pediatr Endocrinol Metab. 2020;33:1465–74. https://doi.org/10.1515/JPEM-2020-0174.

    Article  CAS  PubMed  Google Scholar 

  120. Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115:94–101. https://doi.org/10.1172/JCI23237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Eloy C, Santos J, Soares P, Sobrinho-Simões M. Intratumoural lymph vessel density is related to presence of lymph node metastases and separates encapsulated from infiltrative papillary thyroid carcinoma. Virchows Arch. 2011;459:595–605. https://doi.org/10.1007/S00428-011-1161-3.

    Article  CAS  PubMed  Google Scholar 

  122. Espadinha C, Santos JR, Sobrinho LG, Bugalho MJ. Expression of iodine metabolism genes in human thyroid tissues: evidence for age and BRAFV600E mutation dependency. Clin Endocrinol (Oxf). 2009;70:629–35. https://doi.org/10.1111/J.1365-2265.2008.03376.X.

    Article  CAS  PubMed  Google Scholar 

  123. Fehér LZ, Pocsay G, Krenács L, Zvara Á, Bagdi E, Pocsay R, et al. Amplification of thymosin beta 10 and AKAP13 genes in metastatic and aggressive papillary thyroid carcinomas. Pathol Oncol Res. 2012;18:449–58. https://doi.org/10.1007/S12253-011-9467-7.

    Article  PubMed  Google Scholar 

  124. Fenton C, Anderson J, Lukes Y, Welch Dinauer CA, Tuttle RM, Francis GL. Ras mutations are uncommon in sporadic thyroid cancer in children and young adults. J Endocrinol Invest. 1999;22:781–9. https://doi.org/10.1007/BF03343644.

    Article  CAS  PubMed  Google Scholar 

  125. Franco AT, Ricarte-Filho JC, Isaza A, Jones Z, Jain N, Mostoufi-Moab S, et al. Fusion oncogenes are associated with increased metastatic capacity and persistent disease in pediatric thyroid cancers. J Clin Oncol. 2022;40:1081–90. https://doi.org/10.1200/JCO.21.01861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Galuppini F, Vianello F, Censi S, Barollo S, Bertazza L, Carducci S, et al. Differentiated thyroid carcinoma in pediatric age: Genetic and clinical scenario. Front Endocrinol (Lausanne). 2019;10. https://doi.org/10.3389/FENDO.2019.00552.

  127. Geng J, Liu Y, Guo Y, Wang H, Tai J, Jin Y, et al. Correlation between TERT C228T and clinic-pathological features in pediatric papillary thyroid carcinoma. Sci China Life Sci. 2019;62:1563–71. https://doi.org/10.1007/S11427-018-9546-5.

    Article  CAS  PubMed  Google Scholar 

  128. Geng J, Wang H, Liu Y, Tai J, Jin Y, Zhang J, et al. Correlation between BRAF V600E mutation and clinicopathological features in pediatric papillary thyroid carcinoma. Sci China Life Sci. 2017;60:729–38. https://doi.org/10.1007/S11427-017-9083-8.

    Article  CAS  PubMed  Google Scholar 

  129. Gertz RJ, Nikiforov Y, Rehrauer W, McDaniel L, Lloyd RV. Mutation in BRAF and other members of the MAPK pathway in papillary thyroid carcinoma in the pediatric population. Arch Pathol Lab Med. 2016;140:134–9. https://doi.org/10.5858/ARPA.2014-0612-OA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Şenyürek YG, İşcan Y, Sormaz İC, Poyrazoğlu Ş, Tunca F. The role of American thyroid association pediatric thyroid cancer risk stratification and BRAFV600E mutation in predicting the response to treatment in papillary thyroid cancer patients ≤18 years old. J Clin Res Pediatr Endocrinol. 2022;14:196. https://doi.org/10.4274/JCRPE.GALENOS.2022.2021-10-4.

    Article  Google Scholar 

  131. Givens DJ, Buchmann LO, Agarwal AM, Grimmer JF, Hunt JP. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma. Laryngoscope. 2014;124. https://doi.org/10.1002/LARY.24668.

  132. Hieber L, Huber R, Bauer V, Schäffner Q, Braselmann H, Thomas G, et al. Chromosomal rearrangements in post-Chernobyl papillary thyroid carcinomas: evaluation by spectral karyotyping and automated interphase FISH. J Biomed Biotechnol. 2011;2011. https://doi.org/10.1155/2011/693691.

  133. Hillebrandt S, Streffer C, Demidchik EP, Biko J, Reiners C. Polymorphisms in the p53 gene in thyroid tumours and blood samples of children from areas in Belarus. Mutat Res. 1997;381:201–7. https://doi.org/10.1016/S0027-5107(97)00169-3.

    Article  CAS  PubMed  Google Scholar 

  134. Jie Y, Ruan J, Cai Y, Luo M, Liu R. Comparison of ultrasonography and pathology features between children and adolescents with papillary thyroid carcinoma. Heliyon. 2023;9. https://doi.org/10.1016/J.HELIYON.2023.E12828.

  135. Lee YJ, Cho YJ, Heo YJ, Chung EJ, Choi YH, Kim J Il, et al. Thyroid nodules in childhood-onset Hashimoto’s thyroiditis: Frequency, risk factors, follow-up course and genetic alterations of thyroid cancer. Clin Endocrinol (Oxf). 2021;95:638–48. https://doi.org/10.1111/CEN.14490.

  136. Lee YA, Lee H, Im SW, Song YS, Oh DY, Kang HJ, et al. NTRK and RET fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake. J Clin Invest. 2021;131. https://doi.org/10.1172/JCI144847.

  137. Macerola E, Proietti A, Poma AM, Ugolini C, Torregrossa L, Vignali P, et al. Molecular alterations in relation to histopathological characteristics in a large series of pediatric papillary thyroid carcinoma from a single institution. Cancers (Basel). 2021;13. https://doi.org/10.3390/CANCERS13133123.

  138. Mclver B, Grebe SKG, Wang L, Hay ID, Yokomizo A, Liu W, et al. FHIT and TSG101 in thyroid tumours: Aberrant transcripts reflect rare abnormal RNA processing events of uncertain pathogenetic or clinical significance. Clin Endocrinol (Oxf). 2000;52:749–57. https://doi.org/10.1046/j.1365-2265.2000.01009.x.

    Article  CAS  Google Scholar 

  139. Mostoufi-Moab S, Labourier E, Sullivan L, Livolsi V, Li Y, Xiao R, et al. Molecular testing for oncogenic gene alterations in pediatric thyroid lesions. Thyroid. 2018;28:60–7. https://doi.org/10.1089/THY.2017.0059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Naito H, Pairojkul C, Kitahori Y, Yane K, Miyahara H, Konishi N, et al. Different ras gene mutational frequencies in thyroid papillary carcinomas in Japan and Thailand. Cancer Lett. 1998;131:171–5. https://doi.org/10.1016/S0304-3835(98)00149-9.

    Article  CAS  PubMed  Google Scholar 

  141. Nicolson NG, Murtha TD, Dong W, Paulsson JO, Choi J, Barbieri AL, et al. Comprehensive genetic analysis of follicular thyroid carcinoma predicts prognosis independent of histology. J Clin Endocrinol Metab. 2018;103:2640–50. https://doi.org/10.1210/JC.2018-00277.

    Article  PubMed  Google Scholar 

  142. Nikita ME, Jiang W, Cheng SM, Hantash FM, McPhaul MJ, Newbury RO, et al. Mutational analysis in pediatric thyroid cancer and correlations with age, ethnicity, and clinical presentation. Thyroid. 2016;26:227–34. https://doi.org/10.1089/THY.2015.0401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Park HJ, Baek I, Cheang G, Solomon JP, Song W. Comparison of RNA-based next-generation sequencing assays for the detection of NTRK gene fusions. J Mol Diagn. 2021;23:1443–51. https://doi.org/10.1016/J.JMOLDX.2021.07.027.

    Article  CAS  PubMed  Google Scholar 

  144. Passon N, Bregant E, Sponziello M, Dima M, Rosignolo F, Durante C, et al. Somatic amplifications and deletions in genome of papillary thyroid carcinomas. Endocrine. 2015;50:453–64. https://doi.org/10.1007/S12020-015-0592-Z.

    Article  CAS  PubMed  Google Scholar 

  145. Pauws E, Tummers RFHM, Ris-Stalpers C, De Vijlder JJM, Vote T. Absence of activating mutations in ras and gsp oncogenes in a cohort of nine patients with sporadic pediatric thyroid tumors. Med Pediatr Oncol. 2001;36:630–4. https://doi.org/10.1002/MPO.1140.

    Article  CAS  PubMed  Google Scholar 

  146. Pekova B, Dvorakova S, Sykorova V, Vacinova G, Vaclavikova E, Moravcova J, et al. Somatic genetic alterations in a large cohort of pediatric thyroid nodules. Endocr Connect. 2019;8:796–805. https://doi.org/10.1530/EC-19-0069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Picarsic JL, Buryk MA, Ozolek J, Ranganathan S, Monaco SE, Simons JP, et al. Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatr Dev Pathol. 2016;19:115–22. https://doi.org/10.2350/15-07-1667-OA.1.

    Article  PubMed  Google Scholar 

  148. Port M, Boltze C, Wang Y, Röper B, Meineke V, Abend M. A radiation-induced gene signature distinguishes post-Chernobyl from sporadic papillary thyroid cancers. Radiat Res. 2007;168:639–49. https://doi.org/10.1667/RR0968.1.

    Article  CAS  PubMed  Google Scholar 

  149. Poyrazoğlu Ş, Bundak R, Baş F, Yeğen G, Şanlı Y, Darendeliler F. Clinicopathological characteristics of papillary thyroid cancer in children with emphasis on pubertal status and association with BRAFV600E mutation. J Clin Res Pediatr Endocrinol. 2017;9:185–93. https://doi.org/10.4274/JCRPE.3873.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Rabes HM, Demidchik EP, Sidorow JD, Lengfelder E, Beimfohr C, Hoelzel D, et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: Biological, phenotypic, and clinical implications. Clin Cancer Res. 2000;6:1093–103.

    CAS  PubMed  Google Scholar 

  151. Ricarte-Filho JC, Halada S, O’Neill A, Casado-Medrano V, Laetsch TW, Franco AT, et al. The clinical aspect of NTRK-fusions in pediatric papillary thyroid cancer. Cancer Genet. 2022;262–263:57–63. https://doi.org/10.1016/J.CANCERGEN.2022.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ricarte-Filho JC, Li S, Garcia-Rendueles MER, Montero-Conde C, Voza F, Knauf JA, et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest. 2013;123:4935–44. https://doi.org/10.1172/JCI69766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ricarte-Filho JC, Casado-Medrano V, Reichenberger E, Spangler Z, Scheerer M, Isaza A, et al. DICER1 RNase IIIb domain mutations trigger widespread miRNA dysregulation and MAPK activation in pediatric thyroid cancer. Front Endocrinol (Lausanne). 2023;14. https://doi.org/10.3389/FENDO.2023.1083382/FULL.

  154. Richter HE, Lohrer HD, Hieber L, Kellerer AM, Lengfelder E, Bauchinger M. Microsatellite instability and loss of heterozygosity in radiation-associated thyroid carcinomas of Belarussian children and adults. Carcinogenesis. 1999;20:2247–51. https://doi.org/10.1093/CARCIN/20.12.2247.

    Article  CAS  PubMed  Google Scholar 

  155. Rosenbaum E, Hosler G, Zahurak M, Cohen Y, Sidransky D, Westra WH. Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma. Mod Pathol. 2005;18:898–902. https://doi.org/10.1038/MODPATHOL.3800252.

    Article  CAS  PubMed  Google Scholar 

  156. Rusinek D, Pfeifer A, Cieslicka M, Kowalska M, Pawlaczek A, Krajewska J, et al. TERT promoter mutations and their impact on gene expression profile in papillary thyroid carcinoma. Cancers (Basel). 2020;12:1–20. https://doi.org/10.3390/CANCERS12061597.

    Article  Google Scholar 

  157. Smida J, Zitzelsberger H, Kellerer A, Lehmann L, Minkus G, Negele T, et al. p53 mutations in childhood thyroid tumors from Belarus and in theyroid tumors without radiation history. Int J Cancer. 1997. https://doi.org/10.1002/(SICI)1097-0215(19971210)73:6.

    Article  PubMed  Google Scholar 

  158. Thomas GA, Bunnell H, Cook HA, Williams ED, Nerovnya A, Cherstvoy ED, et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab. 1999;84:4232–8. https://doi.org/10.1210/JCEM.84.11.6129.

    Article  CAS  PubMed  Google Scholar 

  159. Tian T, Huang S, Dai H, Qi M, Liu B, Huang R. Radioactive iodine-refractory pulmonary metastases of papillary thyroid cancer in children, adolescents, and young adults. J Clin Endocrinol Metab. 2023;108:306–14. https://doi.org/10.1210/CLINEM/DGAC600.

    Article  PubMed  Google Scholar 

  160. Unger K, Malisch E, Thomas G, Braselmann H, Walch A, Jackl G, et al. Array CGH demonstrates characteristic aberration signatures in human papillary thyroid carcinomas governed by RET/PTC. Oncogene. 2008;27:4592–602. https://doi.org/10.1038/ONC.2008.99.

    Article  CAS  PubMed  Google Scholar 

  161. Vinagre J, Almeida A, Pópulo H, Batista R, Lyra J, Pinto V, et al. Frequency of TERT promoter mutations in human cancers. Nat Commun. 2013;4. https://doi.org/10.1038/NCOMMS3185.

  162. Zhao X, Kotch C, Fox E, Surrey LF, Wertheim GB, Baloch ZW, et al. NTRK fusions identified in pediatric tumors: The frequency, fusion partners, and clinical outcome. JCO Precis Oncol. 2021;1:204–14. https://doi.org/10.1200/PO.20.00250.

    Article  Google Scholar 

  163. Kuick CH, Chen WW, Chen H, Chang KTE, Mok Y. Validation of long mononucleotide repeat markers for microsatellite instability testing in paediatric tumours. J Clin Pathol. 2023;76:214–6. https://doi.org/10.1136/JCP-2022-208692.

    Article  PubMed  Google Scholar 

  164. Smida J, Salassidis K, Hieber L, Zitzelsberger H, Kellerer AM, Demidchik EP, et al. Distinct frequency of ret rearrangements in papillary thyroid carcinoma of children and adults from Belarus. J Cancer. 1999;80:32–8. https://doi.org/10.1002/(SICI)1097-0215(19990105)80:1.

    Article  CAS  Google Scholar 

  165. Sassolas G, Hafdi-Nejjari Z, Ferraro A, Decaussin-Petrucci M, Rousset B, Borson-Chazot F, et al. Oncogenic alterations in papillary thyroid cancers of young patients. Thyroid. 2012;22:17–26. https://doi.org/10.1089/THY.2011.0215.

    Article  CAS  PubMed  Google Scholar 

  166. Onder S, Mete O, Yilmaz I, Bayram A, Bagbudar S, Altay AY, et al. DICER1 mutations occur in more than one-third of follicular-patterned pediatric papillary thyroid carcinomas and correlate with a low-risk disease and female gender predilection. Endocr Pathol. 2022;33:437–45. https://doi.org/10.1007/S12022-022-09736-Y.

    Article  CAS  PubMed  Google Scholar 

  167. Laetsch TW, DuBois SG, Mascarenhas L, Turpin B, Federman N, Albert CM, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19:705–14. https://doi.org/10.1016/S1470-2045(18)30119-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bauer AJ. Molecular genetics of thyroid cancer in children and adolescents. Endocrinol Metab Clin North Am. 2017;46:389–403. https://doi.org/10.1016/J.ECL.2017.01.014.

    Article  PubMed  Google Scholar 

  169. Cherella CE, Wassner AJ. Pediatric thyroid cancer: Recent developments. Best Pract Res Clin Endocrinol Metab. 2023;37. https://doi.org/10.1016/J.BEEM.2022.101715.

  170. Jargin SV. On the RET rearrangements in chernobyl-related thyroid cancer. J Thyroid Res. 2012;2012. https://doi.org/10.1155/2012/373879.

  171. Jarzab B, Handkiewicz-Junak D. Differentiated thyroid cancer in children and adults: same or distinct disease? Hormones. 2007;6:200–9.

    PubMed  Google Scholar 

  172. Nikiforov YE. Radiation-induced thyroid cancer: what we have learned from chernobyl. Endocr Pathol. 2006;17:307–18. https://doi.org/10.1007/S12022-006-0001-5.

    Article  CAS  PubMed  Google Scholar 

  173. Pacini F, Vorontsova T, Molinaro E, Shavrova E, Agate L, Kuchinskaya E, et al. Thyroid consequences of the Chernobyl nuclear accident. Acta Paediatr Suppl. 1999;88:23–7. https://doi.org/10.1111/J.1651-2227.1999.TB14399.X.

    Article  CAS  PubMed  Google Scholar 

  174. Paulson VA, Rudzinski ER, Hawkins DS. Thyroid cancer in the pediatric population. Genes (Basel). 2019;10. https://doi.org/10.3390/GENES10090723.

  175. Poorten V Vander, Hens G, Delaere P. Thyroid cancer in children and adolescents. Curr Opin Otolaryngol Head Neck Surg. 2013;21:135–42. https://doi.org/10.1097/MOO.0B013E32835E15D9.

  176. Papadopoulou F, Efthimiou E. Thyroid cancer after external or internal ionizing irradiation. Hell J Nucl Med. 2009;12:266–70.

    PubMed  Google Scholar 

  177. Thomas G. Radiation and thyroid cancer - an overview. Radiat Prot Dosimetry. 2018;182:53–7. https://doi.org/10.1093/RPD/NCY146.

    Article  CAS  PubMed  Google Scholar 

  178. Kotanidou EP, Giza S, Tsinopoulou VR, Margaritis K, Papadopoulou A, Sakellari E, et al. The prognostic significance of BRAF gene analysis in children and adolescents with papillary thyroid carcinoma: A systematic review and meta-analysis. Diagnostics (Basel). 2023;13. https://doi.org/10.3390/DIAGNOSTICS13061187.

  179. Satapathy S, Bal C. Genomic landscape of sporadic pediatric differentiated thyroid cancers: a systematic review and meta-analysis. J Pediatr Endocrinol Metab. 2022;35:749–60. https://doi.org/10.1515/JPEM-2021-0741.

    Article  CAS  PubMed  Google Scholar 

  180. Cordioli MICV, Moraes L, Carvalheira G, Sisdelli L, Alves MTS, Delcelo R, et al. AGK-BRAF gene fusion is a recurrent event in sporadic pediatric thyroid carcinoma. Cancer Med. 2016;5:1535–41. https://doi.org/10.1002/CAM4.698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grant 406952/2022-1 from the Ministry of Health, Brazil, and research grants 2014/06570-6 and 2022/09713-9 from the São Paulo State Research Foundation (FAPESP). INN and YPC are CAPES scholars. MSAS is a Brazilian Research Council (CNPq) scholar. JMC is a CNPq investigator. The authors thank Mabel F Figueiró for supporting protocol development and validation, and systematic review methodology revision.

Author information

Authors and Affiliations

Authors

Contributions

MSAS and JMC made substantial contributions to the conception or design of the work; MSAS, INN, YPC, LS and JMC made substantial contributions to the acquisition, analysis, or interpretation of data; MSAS, INN, YPC, LS and JMC drafted the work or revised it critically for important intellectual content; all authors approved the version to be published; and MSAS, INN, YPC, LS and JMC agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Janete Maria Cerutti.

Ethics declarations

Competing interest

All authors declare no direct or indirect financial or non-financial competing interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 828 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, M.S.A., Nunes, I.N., Christiano, Y.P. et al. Genetic alterations landscape in paediatric thyroid tumours and/or differentiated thyroid cancer: Systematic review. Rev Endocr Metab Disord 25, 35–51 (2024). https://doi.org/10.1007/s11154-023-09840-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09840-2

Keywords

Navigation