Skip to main content
Log in

Variable phenotypes of individual and family monogenic cases with hyperinsulinism and diabetes: a systematic review

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Maturity-Onset Diabetes of the Youth (MODY) diabetes remains commonly misdiagnosed. A monogenic form should be suspected in individuals presenting hyperinsulinemic hypoglycemia (HH) associated with, either later development of MODY (hypoglycemia-remission-diabetes sequence), or with first/second-degree family history of diabetes. Herein, we aimed to describe this individual or family monogenic association between HH and diabetes, and identify potential genotype–phenotype correlations. We conducted a systematic review of 26 studies, including a total of 67 patients with this association resulting from variants in GCK (n = 5 cases), ABCC8 (n = 29), HNF1A (n = 5), or HNF4A (n = 28). A family history of hypoglycemia and/or diabetes was present in 91% of cases (61/67). Median age at first hypoglycemia was 24 h after birth. Diazoxide was initiated in 46 children (46/67–69%); responsiveness was found in 91% (42/46). Median HH duration was three years (1 day-25 years). Twenty-three patients (23/67–34%) later developed diabetes (median age: 13 years; range: 8–48); more frequently in those untreated with diazoxide. This association was most commonly inherited in an autosomal dominant manner (43/48–90%). Some genes were associated with less severe initial hypoglycemia (HNF1A), shorter duration of HH (HNF4A), and more maternal (ABCC8) or paternal (HNF4A) transmission. This study illustrates that the same genotype can give a biphasic phenotype in the same person or a reverse phenotype in the same family. Wider awareness of this association is necessary in pediatrics to establish annual monitoring of patients who have presented HH, and during maternity to screen diabetes and optimize genetic counseling and management of pregnancy, childbirth, and the newborn.

PROSPERO registration: CRD42020178265.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in the published article [and its supplementary information files].

Code availability

Not applicable.

References

  1. Naylor R, Knight Johnson A, del Gaudio D. Maturity-Onset Diabetes of the Young Overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. http://www.ncbi.nlm.nih.gov/books/NBK500456/. Accessed 20 Apr 2020.

  2. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53:2504–8.

    Article  CAS  PubMed  Google Scholar 

  3. Pihoker C, Gilliam LK, Ellard S, Dabelea D, Davis C, Dolan LM, et al. Prevalence, Characteristics and Clinical Diagnosis of Maturity Onset Diabetes of the Young Due to Mutations in HNF1A, HNF4A, and Glucokinase: Results From the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab. 2013;98:4055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shepherd M, Shields B, Hammersley S, Hudson M, McDonald TJ, Colclough K, et al. Systematic population screening, using biomarkers and genetic testing, identifies 2.5% of the UK pediatric diabetes population with monogenic diabetes. Diabetes Care. 2016;39:1879–88.

  5. Glaser B, Kesavan P, Heyman M, Davis E, Cuesta A, Buchs A, et al. Familial Hyperinsulinism Caused by an Activating Glucokinase Mutation. N Engl J Med. Massachusetts Medical Society; 1998;338:226–30.

  6. Huopio H, Reimann F, Ashfield R, Komulainen J, Lenko H-L, Rahier J, et al. Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest. 2000;106:897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brusgaard K, Christesen HBT, Hansen T, Njölstad P, Malec J, Brock JB. A TCF1 mutation may cause transient congenital hyperinsulinism followed by MODY3. BioScientifica; 2006. https://www.endocrine-abstracts.org/ea/0011/ea0011p283. Accessed 20 Apr 2020.

  8. Pearson ER, Boj SF, Steele AM, et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med. 2007;4(4): e118.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62:e1-34.

    Article  PubMed  Google Scholar 

  10. Magge SN, Shyng S-L, MacMullen C, Steinkrauss L, Ganguly A, Katz LEL, et al. Familial Leucine-Sensitive Hypoglycemia of Infancy Due to a Dominant Mutation of the β-Cell Sulfonylurea Receptor. J Clin Endocrinol Metab. 2004;89:4450–6.

    Article  CAS  PubMed  Google Scholar 

  11. Gussinyer M, Clemente M, Cebrián R, Yeste D, Albisu M, Carrascosa A. Glucose Intolerance and Diabetes Are Observed in the Long-Term Follow-Up of Nonpancreatectomized Patients With Persistent Hyperinsulinemic Hypoglycemia of Infancy Due to Mutations in the ABCC8 Gene. Diabetes Care. 2008;31:1257–9.

    Article  CAS  PubMed  Google Scholar 

  12. Abdulhadi-Atwan M, Bushmann J, Tornovsky-Babaey S, Perry A, Abu-Libdeh A, Glaser B, et al. Novel De Novo Mutation in Sulfonylurea Receptor 1 Presenting as Hyperinsulinism in Infancy Followed by Overt Diabetes in Early Adolescence. Diabetes. 2008;57:1935–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pinney SE, MacMullen C, Becker S, Lin Y-W, Hanna C, Thornton P, et al. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J Clin Invest. 2008;118:2877–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vieira TC, Bergamin CS, Gurgel LC, Moisés RS. Hyperinsulinemic hypoglycemia evolving to gestational diabetes and diabetes mellitus in a family carrying the inactivating ABCC8 E1506K mutation. Pediatr Diabetes. 2010;11:505–8.

    Article  CAS  PubMed  Google Scholar 

  15. Oçal G, Flanagan SE, Hacihamdioğlu B, Berberoğlu M, Siklar Z, Ellard S, et al. Clinical characteristics of recessive and dominant congenital hyperinsulinism due to mutation(s) in the ABCC8/KCNJ11 genes encoding the ATP-sensitive potasium channel in the pancreatic beta cell. J Pediatr Endocrinol Metab. 2011;24:1019–23.

    Article  PubMed  Google Scholar 

  16. Kapoor RR, Flanagan SE, James CT, McKiernan J, Thomas AM, Harmer SC, et al. Hyperinsulinaemic hypoglycaemia and diabetes mellitus due to dominant ABCC8/KCNJ11 mutations. Diabetologia. 2011;54:2575–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saito-Hakoda A, Yorifuji T, Kanno J, Kure S, Fujiwara I. Nateglinide is Effective for Diabetes Mellitus with Reactive Hypoglycemia in a Child with a Compound Heterozygous ABCC8 Mutation. Clin Pediatr Endocrinol. 2012;21:45–52.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Harel S, Cohen ASA, Hussain K, Flanagan SE, Schlade-Bartusiak K, Patel M, et al. Alternating hypoglycemia and hyperglycemia in a toddler with a homozygous p.R1419H ABCC8 mutation: an unusual clinical picture. J Pediatr Endocrinol Metab. 2015;28:345–351.

  19. Dastamani A, Güemes M, Walker J, Shah P, Hussain K. Sirolimus precipitating diabetes mellitus in a patient with congenital hyperinsulinaemic hypoglycaemia due to autosomal dominant ABCC8 mutation. J Pediatr Endocrinol Metab. 2017;30:1219–22.

    Article  CAS  PubMed  Google Scholar 

  20. Işık E, Demirbilek H, Houghton JA, Ellard S, Flanagan SE, Hussain K. Congenital Hyperinsulinism and Evolution to Sulfonylurearesponsive Diabetes Later in Life due to a Novel Homozygous p.L171F ABCC8 Mutation. J Clin Res Pediatr Endocrinol. 2019;11:82–7.

  21. Dusátková P, Průhová S, Sumník Z, Kolousková S, Obermannová B, Cinek O, et al. HNF1A mutation presenting with fetal macrosomia and hypoglycemia in childhood prior to onset of overt diabetes. J Pediatr Endocrinol Metab. 2011;24:377–9.

    Article  PubMed  Google Scholar 

  22. Stanescu DE, Hughes N, Kaplan B, Stanley CA, De León DD. Novel Presentations of Congenital Hyperinsulinism due to Mutations in the MODY genes: HNF1A and HNF4A. J Clin Endocrinol Metab. 2012;97:E2026–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tung JY, Boodhansingh K, Stanley CA, De León DD. Clinical heterogeneity of hyperinsulinism due to HNF1A and HNF4A mutations. Pediatr Diabetes. 2018;19:910–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fajans SS, Bell GI. Macrosomia and neonatal hypoglycaemia in RW pedigree subjects with a mutation (Q268X) in the gene encoding hepatocyte nuclear factor 4α (HNF4A). Diabetologia. 2007;50:2600–1.

    Article  CAS  PubMed  Google Scholar 

  25. Kapoor RR, Locke J, Colclough K, Wales J, Conn JJ, Hattersley AT, et al. Persistent Hyperinsulinemic Hypoglycemia and Maturity-Onset Diabetes of the Young Due to Heterozygous HNF4A Mutations. Diabetes. 2008;57:1659–63.

    Article  CAS  PubMed  Google Scholar 

  26. Conn JJ, Simm PJ, Oats JJN, Nankervis AJ, Jacobs SE, Ellard S, et al. Neonatal hyperinsulinaemic hypoglycaemia and monogenic diabetes due to a heterozygous mutation of the HNF4A gene. Aust N Z J Obstet Gynaecol. 2009;49:328–30.

    Article  PubMed  Google Scholar 

  27. Flanagan SE, Kapoor RR, Mali G, Cody D, Murphy N, Schwahn B, et al. Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations. Eur J Endocrinol. 2010;162:987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pingul MM, Hughes N, Wu A, Stanley CA, Gruppuso PA. Hepatocyte Nuclear Factor 4α Gene Mutation Associated with Familial Neonatal Hyperinsulinism and Maturity-Onset Diabetes of the Young. J Pediatr. 2011;158:852–4.

    Article  PubMed  Google Scholar 

  29. Colombo C, Geraci C, Suprani T, Pocecco M, Barbetti F. Macrosomia, transient neonatal hypoglycemia, and monogenic diabetes in a family with heterozygous mutation R154X of HNF4A gene. J Endocrinol Invest. 2011;34:252–3.

    Article  CAS  PubMed  Google Scholar 

  30. Arya VB, Rahman S, Senniappan S, Flanagan SE, Ellard S, Hussain K. HNF4A mutation: switch from hyperinsulinaemic hypoglycaemia to maturity-onset diabetes of the young, and incretin response. Diabet Med. 2014;31:e11–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGlacken-Byrne SM, Hawkes CP, Flanagan SE, Ellard S, McDonnell CM, Murphy NP. The evolving course of HNF4A hyperinsulinaemic hypoglycaemia—a case series. Diabet Med. 2014;31:e1-5.

    Article  CAS  PubMed  Google Scholar 

  32. Galcheva S, Al-Khawaga S, Hussain K. Diagnosis and management of hyperinsulinaemic hypoglycaemia. Best Pract Res Clin Endocrinol Metab. 2018;32:551–73.

    Article  CAS  PubMed  Google Scholar 

  33. Fowden AL. The role of insulin in fetal growth. Early Hum Dev. 1992;29:177–81.

    Article  CAS  PubMed  Google Scholar 

  34. Rosenfeld E, Ganguly A, Leon DDD. Congenital hyperinsulinism disorders: Genetic and clinical characteristics. Am J Med Genet C Semin Med Genet. 2019;181:682–92.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guerin A, Nisenbaum R, Ray JG. Use of Maternal GHb Concentration to Estimate the Risk of Congenital Anomalies in the Offspring of Women with Prepregnancy Diabetes. Diabetes Care. American Diabetes Association. 2007;30:1920–5.

  36. Billionnet C, Mitanchez D, Weill A, Nizard J, Alla F, Hartemann A, et al. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia. 2017;60:636–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gillis D. Familial Hyperinsulinism. In: Adam MP, Ardinger HH, Pagon RA, et al. editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. http://www.ncbi.nlm.nih.gov/books/NBK1375/. Accessed 20 Apr 2020

  38. Arnoux J-B, de Lonlay P, Ribeiro M-J, Hussain K, Blankenstein O, Mohnike K, et al. Congenital hyperinsulinism. Early Hum Dev. 2010;86:287–94.

    Article  CAS  PubMed  Google Scholar 

  39. Gϋemes M, Rahman SA, Kapoor RR, et al. Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management [published online ahead of print, 2020 Mar 17]. Rev Endocr Metab Disord. 2020. https://doi.org/10.1007/s11154-020-09548-7.

  40. Palladino AA, Bennett MJ, Stanley CA. Hyperinsulinism in Infancy and Childhood: When an Insulin Level Is Not Always Enough. Clin Chem Oxford Academic. 2008;54:256–63.

    Article  CAS  Google Scholar 

  41. De León DD, Stanley CA. Determination of insulin for the diagnosis of hyperinsulinemic hypoglycemia. Best Pract Res Clin Endocrinol Metab. 2013;27:763–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ferrara C, Patel P, Becker S, Stanley CA, Kelly A. Biomarkers of Insulin for the Diagnosis of Hyperinsulinemic Hypoglycemia in Infants and Children. J Pediatr. 2016;168:212–9.

    Article  CAS  PubMed  Google Scholar 

  43. Herrera A, Vajravelu ME, Givler S, Mitteer L, Avitabile CM, Lord K, et al. Prevalence of Adverse Events in Children With Congenital Hyperinsulinism Treated With Diazoxide. J Clin Endocrinol Metab. 2018;103:4365–72.

    Article  PubMed  PubMed Central  Google Scholar 

  44. El Hajj N, Schneider E, Lehnen H, Haaf T. Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction. 2014;148(6):R111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Steele AM, Wensley KJ, Ellard S, Murphy R, Shepherd M, Colclough K, et al. Use of HbA1c in the Identification of Patients with Hyperglycaemia Caused by a Glucokinase Mutation: Observational Case Control Studies. PLOS ONE. 2013;8:e65326.

  46. Leibowitz G, Glaser B, Higazi AA, Salameh M, Cerasi E, Landau H. Hyperinsulinemic hypoglycemia of infancy (nesidioblastosis) in clinical remission: high incidence of diabetes mellitus and persistent beta-cell dysfunction at long-term follow-up. J Clin Endocrinol Metab. Oxford Academic. 1995;80:386–92.

  47. Glaser B, Ryan F, Donath M, Landau H, Stanley CA, Baker L, et al. Hyperinsulinism caused by paternal-specific inheritance of a recessive mutation in the sulfonylurea-receptor gene. Diabetes. 1999;48:1652–7.

    Article  CAS  PubMed  Google Scholar 

  48. Straub SG, Cosgrove KE, Ämmälä C, Shepherd RM, O’Brien RE, Barnes PD, et al. Hyperinsulinism of Infancy: The Regulated Release of Insulin by KATP Channel—Independent Pathways. Diabetes. 2001;50:329–39.

    Article  CAS  PubMed  Google Scholar 

  49. Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J. Sur1 Knockout Mice A model for KATP channel-independent regulation of insulin secretion. J Biol Chem. 2000;275:9270–7.

    Article  CAS  PubMed  Google Scholar 

  50. Remedi MS, Rocheleau JV, Tong A, Patton BL, McDaniel ML, Piston DW, et al. Hyperinsulinism in mice with heterozygous loss of KATP channels. Diabetologia. 2006;49:2368–78.

    Article  CAS  PubMed  Google Scholar 

  51. Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B. Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes. 2000;49:1325–33.

    Article  CAS  PubMed  Google Scholar 

  52. Rahman SA, Nessa A, Hussain K. Molecular mechanisms of congenital hyperinsulinism. J Mol Endocrinol. 2015;54:R119–29.

    Article  CAS  PubMed  Google Scholar 

  53. Robertson RP, Zhang HJ, Pyzdrowski KL, Walseth TF. Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J Clin Invest. 1992;90:320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Timsit J, Bellanné-Chantelot C, Velho G. Diabètes de type MODY. EMC Elsevier SAS. 2006;3:1–7.

    Google Scholar 

  55. Olson LK, Redmon JB, Towle HC, Robertson RP. Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J Clin Invest. 1993;92:514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Petrelli A, Giovenzana A, Insalaco V, Phillips BE, Pietropaolo M, Giannoukakis N. Autoimmune Inflammation and Insulin Resistance: Hallmarks So Far and Yet So Close to Explain Diabetes Endotypes. Curr Diab Rep. 2021;21:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weng J, Ekelund M, Lehto M, Li H, Ekberg G, Frid A, et al. Screening for MODY Mutations, GAD Antibodies, and Type 1 Diabetes– Associated HLA Genotypes in Women With Gestational Diabetes Mellitus. Diabetes Care. 2002;25:68–71.

    Article  CAS  PubMed  Google Scholar 

  58. Bowman P, Flanagan SE, Edghill EL, Damhuis A, Shepherd MH, Paisey R, et al. Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia. 2012;55:123–7.

    Article  CAS  PubMed  Google Scholar 

  59. Thanabalasingham G, Pal A, Selwood MP, Dudley C, Fisher K, Bingley PJ, et al. Systematic Assessment of Etiology in Adults With a Clinical Diagnosis of Young-Onset Type 2 Diabetes Is a Successful Strategy for Identifying Maturity-Onset Diabetes of the Young. Diabetes Care. 2012;35:1206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT. Prevalence of Vascular Complications Among Patients With Glucokinase Mutations and Prolonged, Mild Hyperglycemia. JAMA. 2014;311:279–86.

  61. Stride A, Shields B, Gill-Carey O, Chakera AJ, Colclough K, Ellard S, et al. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia. 2014;57:54–6.

    Article  CAS  PubMed  Google Scholar 

  62. Chakera AJ, Steele AM, Gloyn AL, Shepherd MH, Shields B, Ellard S, et al. Recognition and Management of Individuals With Hyperglycemia Because of a Heterozygous Glucokinase Mutation. Diabetes Care. 2015;38:1383–92.

    Article  CAS  PubMed  Google Scholar 

  63. Peter S. Acarbose and Idiopathic Reactive Hypoglycemia. HRP Karger Publishers. 2003;60:166–7.

    CAS  Google Scholar 

  64. Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE, Ellard S. Mutations in the Genes Encoding the Transcription Factors Hepatocyte Nuclear Factor 1 Alpha and 4 Alpha in Maturity-Onset Diabetes of the Young and Hyperinsulinemic Hypoglycemia. Hum Mutat. 2013;34:669–85.

    Article  CAS  PubMed  Google Scholar 

  65. Harries LW, Locke JM, Shields B, Hanley NA, Hanley KP, Steele A, et al. The Diabetic Phenotype in HNF4A Mutation Carriers Is Moderated By the Expression of HNF4A Isoforms From the P1 Promoter During Fetal Development. Diabet Med. 2008;57:1745–52.

    Article  CAS  Google Scholar 

  66. Hewat TI, Laver TW, Houghton JAL, Männistö JME, Alvi S, Brearey SP, et al. Increased referrals for congenital hyperinsulinism genetic testing in children with trisomy 21 reflects the high burden of non-genetic risk factors in this group. Pediatr Diabetes. 2022;23:457–61.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rubio-Cabezas O, Hattersley AT, Njølstad PR, Mlynarski W, Ellard S, White N, et al. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2014;15:47–64.

    Article  CAS  PubMed  Google Scholar 

  68. Bacon S, Kyithar MP, Rizvi SR, Donnelly E, McCarthy A, Burke M, et al. Successful maintenance on sulphonylurea therapy and low diabetes complication rates in a HNF1A–MODY cohort. Diabet Med. 2016;33:976–84.

    Article  CAS  PubMed  Google Scholar 

  69. Bacon S, Kyithar MP, Condron EM, Vizzard N, Burke M, Byrne MM. Prolonged episodes of hypoglycaemia in HNF4A-MODY mutation carriers with IGT. Evidence of persistent hyperinsulinism into early adulthood. Acta Diabetol. 2016;53:965–72.

  70. Haddouche A, Bellanne-Chantelot C, Rod A, Fournier L, Chiche L, Gautier J-F, et al. Liver adenomatosis in patients with hepatocyte nuclear factor-1 alpha maturity onset diabetes of the young (HNF1A-MODY): Clinical, radiological and pathological characteristics in a French series. J Diabetes. 2020;12:48–57.

    Article  CAS  PubMed  Google Scholar 

  71. GoodSmith MS, Skandari MR, Huang ES, Naylor RN. The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. Diabetes Care. 2019;42:2247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liljeström B, Tuomi T, Isomaa B, Sarelin L, Aktan-Collan K, Kääriäinen H. Adolescents at Risk for MODY3 Diabetes Prefer Genetic Testing Before Adulthood. Diabetes Care. 2007;30:1571–3.

    Article  PubMed  Google Scholar 

  73. Bosma AR, Rigter T, Weinreich SS, Cornel MC, Henneman L. A genetic diagnosis of maturity-onset diabetes of the young (MODY): experiences of patients and family members. Diabet Med. 2015;32:1385–92.

    Article  CAS  PubMed  Google Scholar 

  74. Kaffel N, Chakroun E, Dammak M, Mnif M, Smaoui M, Charfi N, et al. Inhibition paradoxale de la réponse somatotrope et corticotrope à l’hypoglycémie par hyperinsulinisme endogène: à propos d’une observation. Paradoxal growth hormone and cortisol response to hypoglycemia caused by endogenous hyperinsulinemia: a case report]. Ann Endocrinol (Paris). 2007;68:204–7.

  75. Hussain K, Hindmarsh P, Aynsley-Green A. Neonates with Symptomatic Hyperinsulinemic Hypoglycemia Generate Inappropriately Low Serum Cortisol Counterregulatory Hormonal Responses. J Clin Endocrinol. 2003;88:4342–7.

    Article  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

KP performed the literature search, preparation of figures, data collection, data analysis, data interpretation, and writing of the initial manuscript. MN initiated the study and proposed the study design, literature search, preparation of figures, data collection, data analysis, data interpretation, and writing. All the authors reviewed the final manuscript, endorsed the findings and the scientific content.

Corresponding author

Correspondence to Marc Nicolino.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11154_2022_9749_MOESM1_ESM.xlsx

Supplementary file1 Online Resource 1: Demographic, clinical, laboratory, genetic, and treatment features of individual or family monogenic association between HH and diabetes in GCK subgroup (XLSX 13 KB)

11154_2022_9749_MOESM2_ESM.xlsx

Supplementary file2 Online Resource 2: Demographic, clinical, laboratory, genetic, and treatment features of individual or family monogenic association between HH and diabetes in ABCC8 subgroup (XLSX 22 KB)

11154_2022_9749_MOESM3_ESM.xlsx

Supplementary file3 Online Resource 3: Demographic, clinical, laboratory, genetic, and treatment features of individual or family monogenic association between HH and diabetes in HNF1A subgroup (XLSX 17 KB)

11154_2022_9749_MOESM4_ESM.xlsx

Supplementary file4 Online Resource 4: Demographic, clinical, laboratory, genetic, and treatment features of individual or family monogenic association between HH and diabetes in HNF4A subgroup (XLSX 20 KB)

Supplementary file5 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perge, K., Nicolino, M. Variable phenotypes of individual and family monogenic cases with hyperinsulinism and diabetes: a systematic review. Rev Endocr Metab Disord 23, 1063–1078 (2022). https://doi.org/10.1007/s11154-022-09749-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09749-2

Keywords

Navigation