Skip to main content

Advertisement

Log in

Repurposing sodium-glucose co-transporter 2 inhibitors (SGLT2i) for cancer treatment – A Review

  • Unsolicited Review
  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Developed as an antidiabetic drug, recent evidence suggests that several sodium-glucose co-transporter 2 inhibitors (SGLT2i), especially canagliflozin and dapagliflozin, may exhibit in vitro and in vivo anticancer activities in selected cancer types, including an inhibition of tumor growth and induction of cell death. When used in combination with chemotherapy or radiotherapy, SGLT2i may offer possible synergistic effects in enhancing their treatment efficacy while alleviating associated side effects. Potential mechanisms include a reduction of glucose uptake into cancer cells, systemic glucose restriction, modulation of multiple signaling pathways, and regulation of different gene and protein expression. Furthermore, preliminary clinical findings have reported potential anticancer properties of canagliflozin and dapagliflozin in patients with liver and colon cancers respectively, with reference to decreases in their tumor marker levels. Given its general tolerability and routine use in diabetes management, SGLT2i may be a good candidate for drug repurposing in cancer treatment and as adjunct to conventional therapies. While current evidence reveals that only certain SGLT2i appear to be effective against selected cancer types, further studies are needed to explore the antitumor abilities of each SGLT2i in various cancers. Moreover, clinical trials are called for to evaluate the safety and feasibility of introducing SGLT2i in the treatment regimen of patients with specific cancers, and to identify the preferred route of drug administration for targeted delivery to selected tumor sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

AFP:

α-Fetoprotein

AMPK:

AMP-activated protein kinase

ATP:

Adenosine triphosphate

CEA:

Carcinoembryonic antigen

CVD:

Cardiovascular diseases

EGFR:

Epidermal growth factor receptor

FOXA1:

Forkhead Box A1

GLUT1:

Glucose transporter 1

HCC:

Hepatocellular carcinoma

LKB1:

Liver kinase B1

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

Me4FDG:

α-Methyl-4[18F]-4-deoxy-D-glucopyranose

mTOR:

Mammalian target of rapamycin

NSCLC:

Non-small cell lung cancer

PET:

Positron emission tomography

SGLT1:

Sodium-glucose co-transporter 1

SGLT2:

Sodium-glucose co-transporter 2

SGLT2i:

Sodium-glucose co-transporter 2 inhibitors

SHH:

Sonic Hedgehog

TNBC:

Triple-negative breast cancer

T2D:

Type 2 diabetes

UGT1A9:

UDP-glucuronosyltransferase 1–9

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes research and clinical practice. 2019;157:107843.

  2. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):14790. https://doi.org/10.1038/s41598-020-71908-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021;71(3):209–49.

  4. Ling S, Brown K, Miksza JK, Howells L, Morrison A, Issa E, et al. Association of Type 2 Diabetes With Cancer: A Meta-analysis With Bias Analysis for Unmeasured Confounding in 151 Cohorts Comprising 32 Million People. Diabetes Care. 2020;43(9):2313–22. https://doi.org/10.2337/dc20-0204.

    Article  PubMed  Google Scholar 

  5. Pearson-Stuttard J, Papadimitriou N, Markozannes G, Cividini S, Kakourou A, Gill D, et al. Type 2 Diabetes and Cancer: An Umbrella Review of Observational and Mendelian Randomization Studies. Cancer Epidemiol Biomark Prev. 2021;30(6):1218–28. https://doi.org/10.1158/1055-9965.EPI-20-1245.

    Article  CAS  Google Scholar 

  6. American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes - 2021. Diabetes Care. 2021;44(Supplement 1):S111-S24. https://doi.org/10.2337/dc21-S009.

  7. Perry RJ, Shulman GI. Sodium-glucose cotransporter-2 inhibitors: Understanding the mechanisms for therapeutic promise and persisting risks. J Biol Chem. 2020;295(42):14379–90. Epub 2020/08/12. https://doi.org/10.1074/jbc.REV120.008387. PubMed PMID: 32796035.

  8. Schubert M, Hansen S, Leefmann J, Guan K. Repurposing Antidiabetic Drugs for Cardiovascular Disease. Front Physiol. 2020;11:1168.

    Article  Google Scholar 

  9. Madaan T, Husain I, Akhtar M, Najmi AK. Exploring novel pharmacotherapeutic applications and repurposing potential of sodium glucose CoTransporter 2 inhibitors. Clin Exp Pharmacol Physiol. 2018;45(9):897–907. https://doi.org/10.1111/1440-1681.12963.

    Article  CAS  Google Scholar 

  10. Shao SC, Chang KC, Lin SJ, Chien RN, Hung MJ, Chan YY, et al. Favorable pleiotropic effects of sodium glucose cotransporter 2 inhibitors: head-to-head comparisons with dipeptidyl peptidase-4 inhibitors in type 2 diabetes patients. Cardiovasc Diabetol. 2020;19(1):17. Epub 2020/02/14. https://doi.org/10.1186/s12933-020-0990-2. PubMed PMID: 32050968; PubMed Central PMCID: PMCPMC7014757.

  11. Li S, Vandvik PO, Lytvyn L, Guyatt GH, Palmer SC, Rodriguez-Gutierrez R, et al. SGLT-2 inhibitors or GLP-1 receptor agonists for adults with type 2 diabetes: a clinical practice guideline. BMJ. 2021;373: n1091. https://doi.org/10.1136/bmj.n1091.

    Article  PubMed  Google Scholar 

  12. Bailey CJ. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes Metab. 2019;21(6):1291–8. https://doi.org/10.1111/dom.13670.

    Article  CAS  PubMed  Google Scholar 

  13. Shao S-C, Kuo L-T, Chien R-N, Hung M-J, Lai EC-C. SGLT2 inhibitors in patients with type 2 diabetes with non-alcoholic fatty liver diseases: an umbrella review of systematic reviews. BMJ Open Diabetes Research & Care. 2020;8(2):e001956. https://doi.org/10.1136/bmjdrc-2020-001956.

  14. Shao SC, Chang KC, Chien RN, Lin SJ, Hung MJ, Chan YY, et al. Effects of sodium-glucose co-transporter-2 inhibitors on serum alanine aminotransferase levels in people with type 2 diabetes: A multi-institutional cohort study. Diabetes Obes Metab. 2020;22(1):128–34. Epub 2019/09/06. https://doi.org/10.1111/dom.13875. PubMed PMID: 31486260.

  15. Koepsell H. The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther. 2017;170:148–65. https://doi.org/10.1016/j.pharmthera.2016.10.017.

    Article  CAS  PubMed  Google Scholar 

  16. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discovery. 2019;18(1):41–58. https://doi.org/10.1038/nrd.2018.168.

    Article  CAS  PubMed  Google Scholar 

  17. Madunić IV, Madunić J, Breljak D, Karaica D, Sabolić I. Sodium-glucose cotransporters: new targets of cancer therapy? Arh Hig Rada Toksikol. 2018;69(4):278–85. https://doi.org/10.2478/aiht-2018-69-3204 (PubMed PMID: 30864374).

    Article  CAS  PubMed  Google Scholar 

  18. Okada J, Matsumoto S, Kaira K, Saito T, Yamada E, Yokoo H, et al. Sodium Glucose Cotransporter 2 Inhibition Combined With Cetuximab Significantly Reduced Tumor Size and Carcinoembryonic Antigen Level in Colon Cancer Metastatic to Liver. Clin Colorectal Cancer. 2018;17(1):e45–8. https://doi.org/10.1016/j.clcc.2017.09.005.

    Article  PubMed  Google Scholar 

  19. Okada J, Yamada E, Saito T, Yokoo H, Osaki A, Shimoda Y, et al. Dapagliflozin Inhibits Cell Adhesion to Collagen I and IV and Increases Ectodomain Proteolytic Cleavage of DDR1 by Increasing ADAM10 Activity. Molecules. 2020;25(3):495. https://doi.org/10.3390/molecules25030495.

    Article  CAS  Google Scholar 

  20. Saito T, Okada S, Yamada E, Shimoda Y, Osaki A, Tagaya Y, et al. Effect of dapagliflozin on colon cancer cell [Rapid Communication]. Endocr J. 2015;62(12):1133–7. https://doi.org/10.1507/endocrj.EJ15-0396.

    Article  CAS  PubMed  Google Scholar 

  21. Kaji K, Nishimura N, Seki K, Sato S, Saikawa S, Nakanishi K, et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J Cancer. 2018;142(8):1712–22. https://doi.org/10.1002/ijc.31193.

    Article  CAS  PubMed  Google Scholar 

  22. Nakano D, Kawaguchi T, Iwamoto H, Hayakawa M, Koga H, Torimura T. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: Multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT). PLoS ONE. 2020;15(4): e0232283. https://doi.org/10.1371/journal.pone.0232283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci. 2015;112(30):E4111–9. https://doi.org/10.1073/pnas.1511698112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren Y, Chen J, Mo X, Yang Q, Chen P, Lu G, et al. Synthetic lethality targeting LKB1 mutant and EGFR wild type human non-small cell lung cancer cells by glucose starvation and SGLT2 inhibition. bioRxiv. 2019:622126. https://doi.org/10.1101/622126.

  25. Scafoglio CR, Villegas B, Abdelhady G, Bailey ST, Liu J, Shirali AS, et al. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma. Sci Transl Med. 2018;10(467):eaat5933. https://doi.org/10.1126/scitranslmed.aat5933. PubMed PMID: 30429355.

  26. Komatsu S, Nomiyama T, Numata T, Kawanami T, Hamaguchi Y, Iwaya C, et al. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation. Endocr J. 2020;67(1):99–106. https://doi.org/10.1507/endocrj.EJ19-0428.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou J, Zhu J, Yu S-J, Ma H-L, Chen J, Ding X-F, et al. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother. 2020;132: 110821. https://doi.org/10.1016/j.biopha.2020.110821.

    Article  CAS  PubMed  Google Scholar 

  28. Xie Z, Wang F, Lin L, Duan S, Liu X, Li X, et al. An SGLT2 inhibitor modulates SHH expression by activating AMPK to inhibit the migration and induce the apoptosis of cervical carcinoma cells. Cancer Lett. 2020;495:200–10. https://doi.org/10.1016/j.canlet.2020.09.005.

    Article  CAS  PubMed  Google Scholar 

  29. Kuang H, Liao L, Chen H, Kang Q, Shu X, Wang Y. Therapeutic Effect of Sodium Glucose Co-Transporter 2 Inhibitor Dapagliflozin on Renal Cell Carcinoma. Med Sci Monit. 2017;23:3737–45. https://doi.org/10.12659/msm.902530 (PubMed PMID: 28763435).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wright E. SGLT2 and cancer. Pflügers Arch Eur J Physiol. 2020;472:1407–14. https://doi.org/10.1007/s00424-020-02448-4.

    Article  CAS  Google Scholar 

  31. Nasiri AR, Rodrigues MR, Li Z, Leitner BP, Perry RJ. SGLT2 inhibition slows tumor growth in mice by reversing hyperinsulinemia. Cancer Metab. 2019;7:10. https://doi.org/10.1186/s40170-019-0203-1 (PubMed PMID: 31867105).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ware K, Smith T, Brown D-V, Hill D, Stewart L. The Effect of Sodium Glucose Transporter 2 Inhibitors on Proliferation and Growth Factor Signaling Pathways in Triple Negative Breast Cancer. The FASEB Journal. 2019;33(S1):647.48-.48. https://doi.org/10.1096/fasebj.2019.33.1_supplement.647.48.

  33. Villani LA, Smith BK, Marcinko K, Ford RJ, Broadfield LA, Green AE, et al. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Molecular Metabolism. 2016;5(10):1048–56. https://doi.org/10.1016/j.molmet.2016.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hung M-H, Chen Y-L, Chen L-J, Chu P-Y, Hsieh F-S, Tsai M-H, et al. Canagliflozin inhibits growth of hepatocellular carcinoma via blocking glucose-influx-induced β-catenin activation. Cell Death Dis. 2019;10(6):420. https://doi.org/10.1038/s41419-019-1646-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu D, Zhou Y, Xie X, He L, Ding J, Pang S, et al. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase A. Int J Oncol. 2020;57(5):1223–33. https://doi.org/10.3892/ijo.2020.5120.

    Article  CAS  PubMed  Google Scholar 

  36. Tsakiridis T, Villani L, Broadfield L, Marcinko K, Tsakiridis E, Ellis P, et al. 69P The diabetes drug canagliflozin sensitizes non-small cell lung cancer (NSCLC) to radiotherapy and chemotherapy. J Thorac Oncol. 2018;13(4):S37. https://doi.org/10.1016/S1556-0864(18)30345-9.

    Article  Google Scholar 

  37. Shiba K, Tsuchiya K, Komiya C, Miyachi Y, Mori K, Shimazu N, et al. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH. Sci Rep. 2018;8(1):2362. https://doi.org/10.1038/s41598-018-19658-7 (PubMed PMID: 29402900).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhong J, Sun P, Xu N, Liao M, Xu C, Ding Y, et al. Canagliflozin inhibits p-gp function and early autophagy and improves the sensitivity to the antitumor effect of doxorubicin. Biochem Pharmacol. 2020;175: 113856. https://doi.org/10.1016/j.bcp.2020.113856.

    Article  CAS  PubMed  Google Scholar 

  39. Song Z, Zhu J, Wei Q, Dong G, Dong Z. Canagliflozin reduces cisplatin uptake and activates Akt to protect against cisplatin-induced nephrotoxicity. American Journal of Physiology-Renal Physiology. 2020;318(4):F1041–52. https://doi.org/10.1152/ajprenal.00512.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawaguchi T, Nakano D, Okamura S, Shimose S, Hayakawa M, Niizeki T, et al. Spontaneous regression of hepatocellular carcinoma with reduction in angiogenesis-related cytokines after treatment with sodium-glucose cotransporter 2 inhibitor in a cirrhotic patient with diabetes mellitus. Hepatol Res. 2019;49(4):479–86. https://doi.org/10.1111/hepr.13247.

    Article  CAS  PubMed  Google Scholar 

  41. U.S. National Library of Medicine ClinicalTrials.gov. A Phase 1b/2 Study of Serabelisib in Combination With Canagliflozin in Patients With Advanced Solid Tumors 2020 [2021/02/05]. Available from: https://clinicaltrials.gov/ct2/show/NCT04073680.

  42. Maurea N, Quagliariello V, Bonelli A, Caronna A, Grimaldi I, Lombari C, et al. 1969P The SGLT2 inhibitor dapagliflozin enhanced anticancer activities and exerts cardioprotective effects against doxorubicin and trastuzumab toxicity through TLR4, MyD88, NF-kB signaling and NLRP3 inflammasome pathway. Ann Oncol. 2020;31:S1106. https://doi.org/10.1016/j.annonc.2020.08.1361.

    Article  Google Scholar 

  43. Quagliariello V, De Laurentiis M, Rea D, Barbieri A, Monti MG, Botti G, et al. SGLT2 inhibitor dapagliflozin against anthracycline and trastuzumab-induced cardiotoxicity: the role of MYD88, NLRP3, Leukotrienes/Interleukin 6 axis and mTORC1 /Fox01/3a mediated apoptosis. European Heart Journal. 2020;41(Supplement_2). https://doi.org/10.1093/ehjci/ehaa946.3253.

  44. U.S. National Library of Medicine ClinicalTrials.gov. Targeting Pancreatic Cancer With Sodium Glucose Transporter 2 (SGLT2) Inhibition 2021 [2021/02/09]. Available from: https://clinicaltrials.gov/ct2/show/NCT04542291.

  45. U.S. National Library of Medicine ClinicalTrials.gov. Neoadjuvant SGLT2 Inhibition in High-Risk Localized Prostate Cancer 2021 [2021/06/23]. Available from: https://clinicaltrials.gov/ct2/show/NCT04887935.

  46. U.S. National Library of Medicine ClinicalTrials.gov. Study of Safety and Efficacy of Dapagliflozin + Metformin XR Versus Metformin in Participants With HR+, HER2-, Advanced Breast Cancer While on Treatment With Alpelisib and Fulvestrant (EPIK-B4) 2021 [2021/06/23]. Available from: https://clinicaltrials.gov/ct2/show/NCT04899349.

  47. Eliaa SG, Al-Karmalawy AA, Saleh RM, Elshal MF. Empagliflozin and Doxorubicin Synergistically Inhibit the Survival of Triple-Negative Breast Cancer Cells via Interfering with the mTOR Pathway and Inhibition of Calmodulin: in vitro and Molecular Docking Studies. ACS Pharmacology & Translational Science. 2020;3(6):1330–8. https://doi.org/10.1021/acsptsci.0c00144.

  48. Saraei P, Asadi I, Kakar MA, Moradi-Kor N. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag Res. 2019;11:3295–313. https://doi.org/10.2147/CMAR.S200059 (PubMed PMID: 31114366).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim JS. Synergistic anti-cancer effects of metformin and SGLT2 inhibitor with platinum-based chemotherapy against human endometrial carcinoma hec-1 and snu-1077 cells. Gynecol Oncol. 2019;154:97–8. https://doi.org/10.1016/j.ygyno.2019.04.230.

    Article  Google Scholar 

  50. Hsieh M-H, Choe JH, Gadhvi J, Kim YJ, Arguez MA, Palmer M, et al. p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas. Cell Rep. 2019;28(7):1860-78.e9. https://doi.org/10.1016/j.celrep.2019.07.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Quagliariello V, De Laurentiis M, Cocco S, Rea G, Bonelli A, Caronna A, et al. NLRP3 as Putative Marker of Ipilimumab-Induced Cardiotoxicity in the Presence of Hyperglycemia in Estrogen-Responsive and Triple-Negative Breast Cancer Cells. International Journal of Molecular Sciences. 2020;21(20). https://doi.org/10.3390/ijms21207802.

  52. Yagi T, Tanaka T, Kubota E, Koyama H, Guo T, Ogawa K, et al. 166-LB: Canagliflozin but Not Empagliflozin Activates AMPK and Suppresses Colon Cancer Cell Growth. Diabetes. 2019;68(Supplement 1):166-LB.  https://doi.org/10.2337/db19-166-LB.

  53. Angelopoulou A, Voulgari E, Kolokithas-Ntoukas A, Bakandritsos A, Avgoustakis K. Magnetic Nanoparticles for the Delivery of Dapagliflozin to Hypoxic Tumors: Physicochemical Characterization and Cell Studies. AAPS PharmSciTech. 2018;19(2):621–33. https://doi.org/10.1208/s12249-017-0874-2.

    Article  CAS  PubMed  Google Scholar 

  54. Angelopoulou A, Kolokithas-Ntoukas A, Papaioannou L, Kakazanis Z, Khoury N, Zoumpourlis V, et al. Canagliflozin-loaded magnetic nanoparticles as potential treatment of hypoxic tumors in combination with radiotherapy. Nanomedicine. 2018;13(19):2435–54. https://doi.org/10.2217/nnm-2018-0145.

    Article  CAS  PubMed  Google Scholar 

  55. Obara K, Shirakami Y, Maruta A, Ideta T, Miyazaki T, Kochi T, et al. Preventive effects of the sodium glucose cotransporter 2 inhibitor tofogliflozin on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic mice. Oncotarget. 2017;8(35):58353–63. https://doi.org/10.18632/oncotarget.16874 (PubMed PMID: 28938561).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gao H-F, Chen L-Y, Cheng C-S, Chen H, Meng Z-Q, Chen Z. SLC5A1 promotes growth and proliferation of pancreatic carcinoma via glucose-dependent AMPK/mTOR signaling. Cancer Manag Res. 2019;11:3171–85. https://doi.org/10.2147/CMAR.S195424 (PubMed PMID: 31114359).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr Matthew Chung for the design and preparation of chord diagrams (Figures 2 and 3), and Ms Xi Xiong for her critical comments to this review.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

CKHW had the original idea, reviewed the literature, and contributed to the development of this review. KTKL reviewed the literature and wrote the first draft. LN, JWHW, HHFL, WWLC, and PCHL provided critical input to the content of this review. All authors contributed to the critical review and revision of the manuscript, and approved the final manuscript as submitted.

Corresponding author

Correspondence to Carlos K. H. Wong.

Ethics declarations

Conflicts of interest

KTK Lau, L Ng, and PCH Lee have no conflict of interest to declare. JWH Wong received research funding from the Hong Kong Research Grants Council, outside the submitted work. HHF Loong received personal fees from Novartis, personal fees from Pfizer, grants and personal fees from MSD, personal fees from Eisai, personal fees from Boehringer-Ingelheim, and grants from Mundipharma, outside the submitted work. WWL Chan received research funding from the Pfizer, outside the submitted work. CKH Wong received research funding from the EuroQoL Group Research Foundation, the Hong Kong Research Grants Council, and the Hong Kong Health and Medical Research Fund, outside the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, K.T.K., Ng, L., Wong, J.W.H. et al. Repurposing sodium-glucose co-transporter 2 inhibitors (SGLT2i) for cancer treatment – A Review. Rev Endocr Metab Disord 22, 1121–1136 (2021). https://doi.org/10.1007/s11154-021-09675-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-021-09675-9

Keywords

Navigation