Skip to main content

Advertisement

Log in

Angiogenesis in diabetes and obesity

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The prevalence of diabetes mellitus and obesity continues to increase globally. Diabetic vascular complications are the main chronic diabetic complications and associated with mortality and disability. Angiogenesis is a key pathological characteristic of diabetic microvascular complications. However, there are two tissue-specific paradoxical changes in the angiogenesis in diabetic microvascular complications: an excessive uncontrolled formation of premature blood vessels in some tissues, such as the retina, and a deficiency in the formation of small blood vessels in peripheral tissues, such as the skin. This review will discuss the paradoxical phenomena of angiogenesis and its underlying mechanism in obesity, diabetes and diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Assoc AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37:S81–90.

    Google Scholar 

  2. Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40.

    CAS  PubMed  Google Scholar 

  3. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    PubMed  Google Scholar 

  4. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4–14.

    CAS  PubMed  Google Scholar 

  5. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults--the evidence report. National Institutes of Health. Obes Res. 1998;6 Suppl 2:51S-209S.

  6. Mokdad AH, Bowman BA, Ford ES, et al. The continuing epidemics of obesity and diabetes in the United States. JAMA. 2001;286:1195–200.

    CAS  PubMed  Google Scholar 

  7. Grundy SM. Metabolic complications of obesity. Endocrine. 2000;13:155–65.

    CAS  PubMed  Google Scholar 

  8. Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther. 2008;88:1322–35.

    PubMed Central  PubMed  Google Scholar 

  9. Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1–18.

    CAS  PubMed  Google Scholar 

  10. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11:73–91.

    CAS  PubMed  Google Scholar 

  11. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol. 2001;280:C1358–66.

    CAS  PubMed  Google Scholar 

  12. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29:15–8.

    CAS  PubMed  Google Scholar 

  13. Ribatti D, Vacca A, Roccaro AM, et al. Erythropoietin as an angiogenic factor. Eur J Clin Invest. 2003;33:891–6.

    CAS  PubMed  Google Scholar 

  14. Arcasoy MO, Hardee ME, Jiang XH, et al. Role of erythropoietin as an angiogenic factor and target in cancer. Blood. 2006;108:127a-a.

    Google Scholar 

  15. Gao GQ, Li Y, Zhang DC, et al. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett. 2001;489:270–6.

    CAS  PubMed  Google Scholar 

  16. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999;285:245–8.

    CAS  PubMed  Google Scholar 

  17. Miao RQ, Agata J, Chao L, et al. Kallistatin is a new inhibitor of angiogenesis and tumor growth. Blood. 2002;100:3245–52.

    CAS  PubMed  Google Scholar 

  18. Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med. 2002;6:1–12.

    CAS  PubMed  Google Scholar 

  19. Costa PZ, Soares R. Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox. Life Sci. 2013;92:1037–45.

    CAS  PubMed  Google Scholar 

  20. Martin A, Komada MR, Sane DC. Abnormal angiogenesis in diabetes mellitus. Med Res Rev. 2003;23:117–45.

    CAS  PubMed  Google Scholar 

  21. Christiaens V, Lijnen HR. Angiogenesis and development of adipose tissue. Mol Cell Endocrinol. 2010;318:2–9.

    CAS  PubMed  Google Scholar 

  22. Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Invest. 2007;117:2362–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Rosberger DF. Diabetic retinopathy current concepts and emerging therapy. Endocrinol Metab Clin North Am. 2013;42:721.

    PubMed  Google Scholar 

  24. The relationship of glycemic exposure (Hba(1c)) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995;44:968–83.

  25. Diabetic Retinopathy Clinical Research N. Randomized clinical trial evaluating intravitreal ranibizumab or saline for vitreous hemorrhage from proliferative diabetic retinopathy. JAMA Ophthalmol. 2013;131:283–93.

    Google Scholar 

  26. Schmidinger G, Maar N, Bolz M, et al. Repeated intravitreal bevacizumab (Avastin((R))) treatment of persistent new vessels in proliferative diabetic retinopathy after complete panretinal photocoagulation. Acta Ophthalmol. 2011;89:76–81.

    CAS  PubMed  Google Scholar 

  27. Bin CW, Moon JW, Kim HC. Intravitreal triamcinolone and bevacizumab as adjunctive treatments to panretinal photocoagulation in diabetic retinopathy. Br J Ophthalmol. 2010;94:858–63.

    Google Scholar 

  28. Shin YW, Lee YJ, Lee BR, et al. Effects of an intravitreal bevacizumab injection combined with panretinal photocoagulation on high-risk proliferative diabetic retinopathy. Korean J Ophthalmol. 2009;23:266–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Cho WB, Oh SB, Moon JW, et al. Panretinal photocoagulation combined with intravitreal bevacizumab in high-risk proliferative diabetic retinopathy. Retina. 2009;29:516–22.

    PubMed  Google Scholar 

  30. Diabetic Retinopathy Clinical Research N, Scott IU, Edwards AR, et al. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology. 2007;114:1860–7.

    Google Scholar 

  31. Cavanagh PR, Buse JB, Frykberg RG, et al. Consensus development conference on diabetic foot wound care - 7–8 April 1999, Boston, Massachusetts. J Am Podiatr Med Assoc. 1999;89:475–83.

    Google Scholar 

  32. Calle-Pascual AL, Garcia-Torre N, Moraga I, et al. Epidemiology of nontraumatic lower-extremity amputation in area 7, Madrid, between 1989 and 1999—a population-based study. Diabetes Care. 2001;24:1686–9.

    CAS  PubMed  Google Scholar 

  33. Lavery LA, Armstrong DG, Wunderlich RP, et al. Diabetic foot syndrome—evaluating the prevalence and incidence of foot pathology in Mexican Americans and non-Hispanic whites from a diabetes disease management cohort. Diabetes Care. 2003;26:1435–8.

    PubMed  Google Scholar 

  34. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA. 2005;293:217–28.

    CAS  PubMed  Google Scholar 

  35. Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267.

    PubMed Central  PubMed  Google Scholar 

  36. Tie L, Li XJ, Wang X, et al. Endothelium-specific GTP cyclohydrolase I overexpression accelerates refractory wound healing by suppressing oxidative stress in diabetes. Am J Physiol Endocrinol Metab. 2009;296:E1423–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Bao P, Kodra A, Tomic-Canic M, et al. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153:347–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Machado MJ, Watson MG, Devlin AH, et al. Dynamics of angiogenesis during wound healing: a coupled in vivo and in silico study. Microcirculation. 2011;18:183–97.

    PubMed  Google Scholar 

  39. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000;5:40–6.

    CAS  PubMed  Google Scholar 

  40. Qi W, Yang C, Dai Z, et al. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of Wnt signaling. Diabetes. 2014.

  41. McBride JD, Jenkins AJ, Liu XC, et al. Elevated circulation levels of an antiangiogenic SERPIN in patients with diabetic microvascular complications impair wound healing through suppression of Wnt signaling. J Investi Dermatol. 2014;134:1725–34.

    CAS  Google Scholar 

  42. Galiano RD, Tepper OM, Pelo CR, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004;164:1935–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Brem H, Kodra A, Golinko MS, et al. Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing. J Invest Dermatol. 2009;129:2275–87.

    CAS  PubMed  Google Scholar 

  44. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Investig. 2007;117:1219–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Gallagher KA, Liu ZJ, Xiao M, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Investig. 2007;117:1249–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Frank S, Stallmeyer B, Kampfer H, et al. Nitric oxide triggers enhanced induction of vascular endothelial growth factor expression in cultured keratinocytes (HaCaT) and during cutaneous wound repair. FASEB J. 1999;13:2002–14.

    CAS  PubMed  Google Scholar 

  47. Braverman IM, Sibley J, Keh A. Ultrastructural analysis of the endothelial pericyte relationship in diabetic cutaneous vessels. J Investig Dermatol. 1990;95:147–53.

    CAS  PubMed  Google Scholar 

  48. Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004;56:549–80.

    CAS  PubMed  Google Scholar 

  49. Chiarelli F, Spagnoli A, Basciani F, et al. Vascular endothelial growth factor (VEGF) in children, adolescents and young adults with Type 1 diabetes mellitus: relation to glycaemic control and microvascular complications. Diabet Med. 2000;17:650–6.

    CAS  PubMed  Google Scholar 

  50. Kocak N, Alacacioglu I, Kaynak S, et al. Comparison of vitreous and plasma levels of vascular endothelial growth factor, interleukin-6 and hepatocyte growth factor in diabetic and non-diabetic retinal detachment cases. Ann Ophthalmol (Skokie). 2010;42:10–4.

    Google Scholar 

  51. Praidou A, Papakonstantinou E, Androudi S, et al. Vitreous and serum levels of vascular endothelial growth factor and platelet-derived growth factor and their correlation in patients with non-proliferative diabetic retinopathy and clinically significant macula oedema. Acta Ophthalmol. 2011;89:248–54.

    CAS  PubMed  Google Scholar 

  52. Watanabe D, Suzuma K, Suzuma I, et al. Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol. 2005;139:476–81.

    CAS  PubMed  Google Scholar 

  53. Funatsu H, Yamashita H, Ikeda T, et al. Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmol. 2003;110:1690–6.

    Google Scholar 

  54. Funatsu H, Yamashita H, Nakamura S, et al. Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmol. 2006;113:294–301.

    Google Scholar 

  55. Funatsu H, Yamashita H, Sakata K, et al. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmol. 2005;112:806–16.

    Google Scholar 

  56. Noma H, Funatsu H, Mimura T, et al. Vitreous levels of interleukin-6 and vascular endothelial growth factor in macular edema with central retinal vein occlusion. Ophthalmol. 2009;116:87–93.

    Google Scholar 

  57. Hernandez C, Burgos R, Canton A, et al. Vitreous levels of vascular cell adhesion molecule and vascular endothelial growth factor in patients with proliferative diabetic retinopathy: a case–control study. Diabetes Care. 2001;24:516–21.

    CAS  PubMed  Google Scholar 

  58. Burgos R, Simo R, Audi L, et al. Vitreous levels of vascular endothelial growth factor are not influenced by its serum concentrations in diabetic retinopathy. Diabetologia. 1997;40:1107–9.

    CAS  PubMed  Google Scholar 

  59. Sato H, Abe T, Wakusawa R, et al. Vitreous levels of vasohibin-1 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Diabetologia. 2009;52:359–61.

    CAS  PubMed  Google Scholar 

  60. Sato T, Kusaka S, Shimojo H, et al. Vitreous levels of erythropoietin and vascular endothelial growth factor in eyes with retinopathy of prematurity. Ophthalmology. 2009;116:1599–603.

    PubMed  Google Scholar 

  61. Ogata N, Nishikawa M, Nishimura T, et al. Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol. 2002;134:348–53.

    CAS  PubMed  Google Scholar 

  62. Bai Y, Ma JX, Guo J, et al. Muller cell-derived VEGF is a significant contributor to retinal neovascularization. J Pathol. 2009;219:446–54.

    CAS  PubMed  Google Scholar 

  63. Rodrigues M, Xin X, Jee K, et al. VEGF secreted by hypoxic Muller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes. 2013;62:3863–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Wang J, Xu X, Elliott MH, et al. Muller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes. 2010;59:2297–305.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Mahdy RA, Nada WM, Hadhoud KM, et al. The role of vascular endothelial growth factor in the progression of diabetic vascular complications. Eye. 2010;24:1576–84.

    CAS  PubMed  Google Scholar 

  66. Semeraro F, Cancarini A, Morescalchi F, et al. Serum and intraocular concentrations of erythropoietin and vascular endothelial growth factor in patients with type 2 diabetes and proliferative retinopathy. Diabetes Metab. 2014.

  67. Frank S, Hubner G, Breier G, et al. Regulation of vascular endothelial growth-factor expression in cultured keratinocytes—implications for normal and impaired wound-healing. J Biol Chem. 1995;270:12607–13.

    CAS  PubMed  Google Scholar 

  68. Shukla A, Dubey MP, Srivastava R, et al. Differential expression of proteins during healing of cutaneous wounds in experimental normal and chronic models. Biochem Biophys Res Commun. 1998;244:434–9.

    CAS  PubMed  Google Scholar 

  69. Tombran-Tink J, Johnson LV. Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells. Invest Ophthalmol Vis Sci. 1989;30:1700–7.

    CAS  PubMed  Google Scholar 

  70. Tombran-Tink J, Chader GG, Johnson LV. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res. 1991;53:411–4.

    CAS  PubMed  Google Scholar 

  71. Tombran-Tink J, Barnstable CJ. PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci. 2003;4:628–36.

    CAS  PubMed  Google Scholar 

  72. Becerra SP, Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer. 2013;13:258–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Chojnacki A, Weiss S. Pigment epithelium-derived growth factor: modulating adult neural stem cell self-renewal. Nat Neurosci. 2009;12:1481–3.

    CAS  PubMed  Google Scholar 

  74. Ho TC, Chen SL, Wu JY, et al. PEDF promotes self-renewal of limbal stem cell and accelerates corneal epithelial wound healing. Stem Cells. 2013;31:1775–84.

    CAS  PubMed  Google Scholar 

  75. Park K, Jin J, Hu Y, et al. Overexpression of pigment epithelium-derived factor inhibits retinal inflammation and neovascularization. Am J Pathol. 2011;178:688–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Zhang SX, Wang JJ, Dashti A, et al. Pigment epithelium-derived factor mitigates inflammation and oxidative stress in retinal pericytes exposed to oxidized low-density lipoprotein. J Mol Endocrinol. 2008;41:135–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Crowe S, Wu LE, Economou C, et al. Pigment epithelium-derived factor contributes to insulin resistance in obesity. Cell Metab. 2009;10:40–7.

    CAS  PubMed  Google Scholar 

  78. Mohan N, Monickaraj F, Balasubramanyam M, et al. Imbalanced levels of angiogenic and angiostatic factors in vitreous, plasma and postmortem retinal tissue of patients with proliferative diabetic retinopathy. J Diabetes Complications. 2012;26:435–41.

    PubMed  Google Scholar 

  79. Zheng BQ, Li T, Chen HB, et al. Correlation between Ficolin-3 and vascular endothelial growth factor-to-pigment epithelium-derived factor ratio in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 2011;152:1039–43.

    CAS  PubMed  Google Scholar 

  80. Park K, Lee K, Zhang B, et al. Identification of a novel inhibitor of the canonical Wnt pathway. Mol Cell Biol. 2011;31:3038–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Jenkins AJ, Zhang S, Rowley K, et al. Increased serum pigment epithelium-derived growth factor levels in type 1 diabetes with microvascular complications. Diabetes. 2006;55:A504-A.

    Google Scholar 

  82. Jenkins AJ, Zhang SX, Rowley KG, et al. Increased serum pigment epithelium-derived factor is associated with microvascular complications, vascular stiffness and inflammation in type 1 diabetes. Diabet Med. 2007;24:1345–51.

    CAS  PubMed  Google Scholar 

  83. Jenkins AJ, Fu D, Azar M, et al. Clinical correlates of serum pigment epithelium-derived factor in type 2 diabetes patients. J Diabetes Complications. 2014;28:353–9.

    PubMed  Google Scholar 

  84. Tryggestad JB, Wang JJ, Zhang SX, et al. Elevated plasma pigment epithelium-derived factor in children with type 2 diabetes mellitus is attributable to obesity. Pediatr Diabetes. 2014.

  85. Wang P, Smit E, Brouwers MCGJ, et al. Plasma pigment epithelium-derived factor is positively associated with obesity in Caucasian subjects, in particular with the visceral fat depot. Eur J Endocrinol. 2008;159:713–8.

    CAS  PubMed  Google Scholar 

  86. Yamagishi S, Adachi H, Abe A, et al. Elevated serum levels of pigment epithelium-derived factor in the metabolic syndrome. J Clin Endocrinol Metab. 2006;91:2447–50.

    CAS  PubMed  Google Scholar 

  87. Dai Z, Qi W, Li C, et al. Dual regulation of adipose triglyceride lipase by pigment epithelium-derived factor: a novel mechanistic insight into progressive obesity. Mol Cell Endocrinol. 2013;377:123–34.

    CAS  PubMed  Google Scholar 

  88. Zhang SX, Wang JJ, Gao G, et al. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol. 2006;37:1–12.

    PubMed  Google Scholar 

  89. Chao J, Tillman DM, Wang M, et al. Identification of a new tissue-kallikrein-binding protein. Biochem J. 1986;239:325–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Wolf WC, Harley RA, Sluce D, et al. Localization and expression of tissue kallikrein and kallistatin in human blood vessels. J Histochem Cytochem. 1999;47:221–8.

    CAS  PubMed  Google Scholar 

  91. Liu X, Zhang B, McBride JD, et al. Antiangiogenic and antineuroinflammatory effects of kallistatin through interactions with the canonical Wnt pathway. Diabetes. 2013;62:4228–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Lu L, Yang Z, Zhu B, et al. Kallikrein-binding protein suppresses growth of hepatocellular carcinoma by anti-angiogenic activity. Cancer Lett. 2007;257:97–106.

    CAS  PubMed  Google Scholar 

  93. Zhu B, Lu L, Cai W, et al. Kallikrein-binding protein inhibits growth of gastric carcinoma by reducing vascular endothelial growth factor production and angiogenesis. Mol Cancer Ther. 2007;6:3297–306.

    CAS  PubMed  Google Scholar 

  94. Ma JX, King LP, Yang Z, et al. Kallistatin in human ocular tissues: reduced levels in vitreous fluids from patients with diabetic retinopathy. Curr Eye Res. 1996;15:1117–23.

    CAS  PubMed  Google Scholar 

  95. Jenkins A, Januszewski A, Mcbride J, et al. Increased serum kallistatin levels in patients with type 1 diabetes and its vascular complications. Diabetes. 2009;58:A214–A5.

    Google Scholar 

  96. Schrufer TL, Antonetti DA, Sonenberg N, et al. Ablation of 4E-BP1/2 prevents hyperglycemia-mediated induction of VEGF expression in the rodent retina and in Muller cells in culture. Diabetes. 2010;59:2107–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Abcouwer SF, Marjon PL, Loper RK, et al. Response of VEGF expression to amino acid deprivation and inducers of endoplasmic reticulum stress. Invest Ophthalmol Vis Sci. 2002;43:2791–8.

    PubMed  Google Scholar 

  98. Kase S, He SK, Sonoda S, et al. Alpha B-crystallin regulation of angiogenesis by modulation of VEGF. Blood. 2010;115:3398–406.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266:11947–54.

    CAS  PubMed  Google Scholar 

  100. Akiri G, Nahari D, Finkelstein Y, et al. Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene. 1998;17:227–36.

    CAS  PubMed  Google Scholar 

  101. Pages G, Pouyssegur J. Transcriptional regulation of the vascular endothelial growth factor gene—a concert of activating factors. Cardiovasc Res. 2005;65:564–73.

    CAS  PubMed  Google Scholar 

  102. Clifford RL, Deacon K, Knox AJ. Novel regulation of vascular endothelial growth factor-A (VEGF-A) by transforming growth factor (beta)1: requirement for Smads, (beta)-CATENIN, AND GSK3(beta). J Biol Chem. 2008;283:35337–53.

    CAS  PubMed  Google Scholar 

  103. Xie K, Wei D, Shi Q, et al. Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth Factor Rev. 2004;15:297–324.

    CAS  PubMed  Google Scholar 

  104. Shima DT, Kuroki M, Deutsch U, et al. The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. J Biol Chem. 1996;271:3877–83.

    CAS  PubMed  Google Scholar 

  105. Ko HM, Jung HH, Seo KH, et al. Platelet-activating factor-induced NF-kappa B activation enhances VEGF expression through a decrease in p53 activity. FEBS Lett. 2006;580:3006–12.

    CAS  PubMed  Google Scholar 

  106. Xie TX, Xia Z, Zhang N, et al. Constitutive NF-kappaB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncol Rep. 2010;23:725–32.

    CAS  PubMed  Google Scholar 

  107. Kiriakidis S, Andreakos E, Monaco C, et al. VEGF expression in human macrophages is NF-kappa B-dependent: studies using adenoviruses expressing the endogenous NF-kappa B inhibitor I kappa B alpha and a kinase-defective form of the I kappa B kinase 2. J Cell Sci. 2003;116:665–74.

    CAS  PubMed  Google Scholar 

  108. Nagineni CN, Kommineni VK, William A, et al. Regulation of VEGF expression in human retinal cells by cytokines: implications for the role of inflammation in age-related macular degeneration. J Cell Physiol. 2012;227:116–26.

    CAS  PubMed  Google Scholar 

  109. Fujioka S, Niu JG, Schmidt C, et al. NF-KB and AP-1 connection: mechanism of NF-kappa B-Dependent regulation of AP-1 activity. Mol Cell Biol. 2004;24:7806–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Yan SD, Schmidt AM, Anderson GM, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end-products with their receptors binding-proteins. J Biol Chem. 1994;269:9889–97.

    CAS  PubMed  Google Scholar 

  111. Neumann A, Schinzel R, Palm D, et al. High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappa B activation and cytokine expression. FEBS Lett. 1999;453:283–7.

    CAS  PubMed  Google Scholar 

  112. Zhu P, Ren M, Yang C, et al. Involvement of RAGE, MAPK and NF-kappaB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Exp Dermatol. 2012;21:123–9.

    CAS  PubMed  Google Scholar 

  113. Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol. 2006;59:15–26.

    PubMed  Google Scholar 

  114. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    CAS  PubMed  Google Scholar 

  115. Zhang XB, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res. 2001;61:6050–4.

    CAS  PubMed  Google Scholar 

  116. Moon RT, Bowerman B, Boutros M, et al. The promise and perils of Wnt signaling through beta-catenin. Science. 2002;296:1644–6.

    CAS  PubMed  Google Scholar 

  117. Ma JX, Hu Y, Zhou T, et al. Activation of the Wnt pathway in the retina, a new pathogenic mechanism for diabetic retinopathy. Diabetes. 2009;58:A228-A.

    Google Scholar 

  118. Chen Y, Hu Y, Zhou T, et al. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Am J Pathol. 2009;175:2676–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Lee K, Hu Y, Ding LX, et al. Therapeutic potential of a monoclonal antibody blocking the Wnt pathway in diabetic retinopathy. Diabetes. 2012;61:2948–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Fathke C, Wilson L, Shah K, et al. Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol. 2006;7.

  121. Wu X, Shen QT, Oristian DS, et al. Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3beta. Cell. 2011;144:341–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Whyte JL, Smith AA, Helms JA. Wnt signaling and injury repair. Cold Spring Harb Perspect Biol. 2012;4.

  123. Hanai J, Gloy J, Karumanchi SA, et al. Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol. 2002;158:529–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Investig. 2007;117:2362–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Rupnick MA, Panigrahy D, Zhang CY, et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A. 2002;99:10730–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Tam J, Duda DG, Perentes JY, et al. Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue expansion: role of local versus bone marrow-derived endothelial cells. PLoS One. 2009;4:e4974.

    PubMed Central  PubMed  Google Scholar 

  127. Brakenhielm E, Cao R, Gao B, et al. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res. 2004;94:1579–88.

    CAS  PubMed  Google Scholar 

  128. Demeulemeester D, Collen D, Lijnen HR. Effect of matrix metalloproteinase inhibition on adipose tissue development. Biochem Biophys Res Commun. 2005;329:105–10.

    CAS  PubMed  Google Scholar 

  129. Lijnen HR, Maquoi E, Hansen LB, et al. Matrix metalloproteinase inhibition impairs adipose tissue development in mice. Arterioscler Thromb Vasc Biol. 2002;22:374–9.

    CAS  PubMed  Google Scholar 

  130. Van Hul M, Lijnen HR. Matrix metalloproteinase inhibition impairs murine adipose tissue development independently of leptin. Endocr J. 2011;58:101–7.

    PubMed  Google Scholar 

  131. Cao YH. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov. 2010;9:107–15.

    CAS  PubMed  Google Scholar 

  132. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    CAS  PubMed  Google Scholar 

  133. Zingaretti MC, Crosta F, Vitali A, et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009;23:3113–20.

    CAS  PubMed  Google Scholar 

  134. Vijgen GH, Bouvy ND, Teule GJ, et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab. 2012;97:E1229–33.

    CAS  PubMed  Google Scholar 

  135. Vijgen GH, Bouvy ND, Teule GJ, et al. Brown adipose tissue in morbidly obese subjects. PLoS One. 2011;6:e17247.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    PubMed  Google Scholar 

  137. Tam CS, Lecoultre V, Ravussin E. Brown adipose tissue: mechanisms and potential therapeutic targets. Circulation. 2012;125:2782–91.

    PubMed  Google Scholar 

  138. Mohamed-Ali V, Pinkney JH, Coppack SW. Adipose tissue as an endocrine and paracrine organ. Int J Obes (Lond). 1998;22:1145–58.

    CAS  Google Scholar 

  139. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112:1785–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92:347–55.

    CAS  PubMed  Google Scholar 

  141. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013;93:1–21.

    CAS  PubMed  Google Scholar 

  142. Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond). 2009;33:54–66.

    CAS  Google Scholar 

  143. O’Rourke RW, White AE, Metcalf MD, et al. Hypoxia-induced inflammatory cytokine secretion in human adipose tissue stromovascular cells. Diabetologia. 2011;54:1480–90.

    PubMed Central  PubMed  Google Scholar 

  144. Gealekman O, Guseva N, Hartigan C, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123:186–U73.

    PubMed Central  PubMed  Google Scholar 

  145. Gavin TP, Stallings HW, Zwetsloot KA, et al. Lower capillary density but no difference in VEGF expression in obese vs. lean young skeletal muscle in humans. J Appl Physiol. 2005;98:315–21.

    CAS  PubMed  Google Scholar 

  146. Pasarica M, Sereda OR, Redman LM, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58:718–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Lash JM, Sherman WM, Hamlin RL. Capillary basement-membrane thickness and capillary density in sedentary and trained obese Zucker rats. Diabetes. 1989;38:854–60.

    CAS  PubMed  Google Scholar 

  148. Pang C, Gao ZG, Yin J, et al. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab. 2008;295:E313–E22.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Spencer M, Unal R, Zhu BB, et al. Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J Clin Endocrinol Metab. 2011;96:E1990–E8.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Sung HK, Doh KO, Son JE, et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab. 2013;17:61–72.

    CAS  PubMed  Google Scholar 

  151. Ye JP, Gao ZG, Yin J, et al. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293:E1118–E28.

    CAS  PubMed  Google Scholar 

  152. Hosogai N, Fukuhara A, Oshima K, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56:901–11.

    CAS  PubMed  Google Scholar 

  153. Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch. 2007;455:479–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Alvarez-Llamas G, Szalowska E, de Vries MP, et al. Characterization of the human visceral adipose tissue secretome. Mol Cell Proteomics. 2007;6:589–600.

    CAS  PubMed  Google Scholar 

  155. Silha JV, Krsek M, Sucharda P, et al. Angiogenic factors are elevated in overweight and obese individuals. Int J Obes (Lond). 2005;29:1308–14.

    CAS  Google Scholar 

  156. Voros G, Lijnen HR. Deficiency of thrombospondin-1 in mice does not affect adipose tissue development. J Thromb Haemost. 2006;4:277–8.

    CAS  PubMed  Google Scholar 

  157. Lakeland TV, Borg ML, Matzaris M, et al. Augmented expression and secretion of adipose-derived pigment epithelium-derived factor does not alter local angiogenesis or contribute to the development of systemic metabolic derangements. Am J Physiol Endocrinol Metab. 2014;306:E1367–E77.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by grants from National Institutes of Health EY012231, EY018659, EY019309, and GM104934, a grant from IRRF, a grant from Oklahoma Center for the Advancement of Science & Technology (OCAST) HR13-076 and grants from Juvenile Diabetic Research Foundation (JDRF)2-SRA-2014-147-Q-R and 3-PDF-2014-107-A-N.

Conflict of interest statement

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-xing Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Ma, Jx. Angiogenesis in diabetes and obesity. Rev Endocr Metab Disord 16, 67–75 (2015). https://doi.org/10.1007/s11154-015-9310-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-015-9310-7

Keywords

Navigation