Skip to main content

Advertisement

Log in

Adipocyte dysfunction, inflammation and metabolic syndrome

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Obesity is frequently associated with chronic inflammation, metabolic and vascular alterations which predispose to the development of the Metabolic Syndrome (MetS). However, the individual obesity-related risk for the MetS is not determined by increased fat mass alone. Heterogeneity of body composition, fat distribution and adipose tissue (AT) function may underly the variable risk to develop metabolic and cardiovascular diseases associated with increased body fat mass. Importantly, an inability to increase AT mass by adipocyte hyperplasia may lead to adipocyte hypertrophy and could induce dysfunction of adipose tissue characterized by decreased insulin sensitivity, hypoxia, increased parameters of intracellular stress, increased autophagy and apoptosis and tissue inflammation. As a result, adipocytes and other AT cells release signals (e.g. adipokines, cells, metabolites) resulting in a proinflammatory, diabetogenic and atherogenic serum profile. These adverse signals may contribute to further AT inflammation and secondary organ damage in target tissues such as liver, brain, endothelium, vasculature, endocrine organs and skeletal muscle. Recently, a specific adipocyte volume threshold has been shown to predict the risk for obesity-associated type 2 diabetes.

Most likely, impaired adipocyte function is caused by genetic, behavioural and environmental factors which are not entirely understood. Elucidating the mechanisms of adipocyte dysfunction may lead to the identification of novel treatment targets for obesity and the MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  1. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–80.

    Article  PubMed  Google Scholar 

  2. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:141–50.

    Article  CAS  PubMed  Google Scholar 

  3. Blüher M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab. 2013;27:163–77.

    Article  PubMed  Google Scholar 

  4. Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 2010;11:897–904.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356:1517–26.

    Article  CAS  PubMed  Google Scholar 

  7. Blüher M. Are there still healthy obese patients? Curr Opin Endocrinol Diabetes Obes. 2012;19:341–6.

    Article  PubMed  Google Scholar 

  8. Klöting N, Fasshauer M, Dietrich A, et al. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab. 2010;299:E506–15.

    Article  PubMed  Google Scholar 

  9. Stefan N, Kantartzis K, Machann J, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168:1609–16.

    Article  PubMed  Google Scholar 

  10. Müller MJ, Lagerpusch M, Enderle J, et al. Beyond the body mass index: tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes Rev. 2012;13 Suppl 2:6–13.

    Article  PubMed  Google Scholar 

  11. Garg A. Clinical review: Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96:3313–25.

    Article  CAS  PubMed  Google Scholar 

  12. Konrad D, Rudich A, Schoenle EJ. Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal fat tissue. Diabetologia. 2007;50:833–9.

    Article  CAS  PubMed  Google Scholar 

  13. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7:410–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Klein S, Fontana L, Young VL, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350:2549–57.

    Article  CAS  PubMed  Google Scholar 

  15. Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord. 2002;26:193–9.

    Article  CAS  PubMed  Google Scholar 

  16. Dillard TH, Purnell JQ, Smith MD, et al. Omentectomy added to Roux-en-Y gastric bypass surgery: a randomized, controlled trial. Surg Obes Relat Dis. 2013;9:269–75.

    Article  PubMed  Google Scholar 

  17. Bays HE. Adiposopathy, diabetes mellitus, and primary prevention of atherosclerotic coronary artery disease: treating ‘’sick fat” through improving fat function with antidiabetes therapies. Am J Cardiol. 2012;110:4B–12B.

    Article  PubMed  Google Scholar 

  18. Bays HE. Adiposopathy is “sick fat” a cardiovascular disease? J Am Coll Cardiol. 2011;57:2461–73.

    Article  CAS  PubMed  Google Scholar 

  19. Björntorp P, Sjöström L. Number and size of adipose tissue fat cells in relation to metabolism in human obesity. Metab Clin Exp. 1971;20:703–13.

    Article  PubMed  Google Scholar 

  20. Cotillard A, Poitou C, Torcivia A, et al. Adipocyte size threshold matters: link with risk of type 2 diabetes and improved insulin resistance after gastric bypass. J Clin Endocrinol Metab. 2014;99:E1466–70.

    Article  CAS  PubMed  Google Scholar 

  21. Salans LB, Knittle JL, Hirsch J. The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. J Clin Invest. 1968;47:153–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Stern JS, Batchelor BR, Hollander N, Cohn CK, Hirsch J. Adipose-cell size and immunoreactive insulin levels in obese and normal-weight adults. Lancet. 1972;2:948–51.

    Article  CAS  PubMed  Google Scholar 

  23. Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007;92:1023–33.

    Article  CAS  PubMed  Google Scholar 

  24. Laurencikiene J, Skurk T, Kulyté A, et al. Regulation of lipolysis in small and large fat cells of the same subject. J Clin Endocrinol Metab. 2011;96:E2045–9.

    Article  CAS  PubMed  Google Scholar 

  25. Blüher M, Patti ME, Gesta S, Kahn BB, Kahn CR. Intrinsic heterogeneity in adipose tissue of fat-specific insulin receptor knock-out mice is associated with differences in patterns of gene expression. J Biol Chem. 2004;279:31891–901.

    Article  PubMed  Google Scholar 

  26. Blüher M, Wilson-Fritch L, Leszyk J, et al. Role of insulin action and cell size on protein expression patterns in adipocytes. J Biol Chem. 2004;279:31902–9.

    Article  PubMed  Google Scholar 

  27. Rudich A, Kanety H, Bashan N. Adipose stress-sensing kinases: linking obesity to malfunction. Trends Endocrinol Metab. 2007;18:291–9.

    Article  CAS  PubMed  Google Scholar 

  28. Bashan N, Dorfman K, Tarnovscki T, et al. Mitogen-activated protein kinases, inhibitory-kappaB kinase, and insulin signaling in human omental versus subcutaneous adipose tissue in obesity. Endocrinology. 2007;148:2955–62.

    Article  CAS  PubMed  Google Scholar 

  29. Kovsan J, Blüher M, Tarnovscki T, et al. Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab. 2011;96:E268–77.

    Article  CAS  PubMed  Google Scholar 

  30. Maixner N, Kovsan J, Harman-Boehm I, et al. Autophagy in adipose tissue. Obes Facts. 2012;5:710–21.

    Article  PubMed  Google Scholar 

  31. Keuper M, Blüher M, Schön MR, et al. An inflammatory micro-environment promotes human adipocyte apoptosis. Mol Cell Endocrinol. 2011;339:105–13.

    Article  CAS  PubMed  Google Scholar 

  32. Blüher M, Klöting N, Wueest S, et al. Fas and FasL expression in human adipose tissue is related to obesity, insulin resistance, and type 2 diabetes. J Clin Endocrinol Metab. 2014;99:E36–44.

    Article  PubMed  Google Scholar 

  33. Arner E, Westermark PO, Spalding KL, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes. 2010;59:105–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hoffstedt J, Arner E, Wahrenberg H, et al. Regional impact of adipose tissue morphology on the metabolic profile in morbid obesity. Diabetologia. 2010;53:2496–503.

    Article  CAS  PubMed  Google Scholar 

  35. Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453:783–7.

    Article  CAS  PubMed  Google Scholar 

  36. Cancello R, Henegar C, Viguerie N, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54:2277–86.

    Article  CAS  PubMed  Google Scholar 

  37. Andersson DP, Eriksson Hogling D, Thorell A, et al. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss. Diabetes Care. 2014;37:1831–6.

    Article  CAS  PubMed  Google Scholar 

  38. Heinonen S, Saarinen L, Naukkarinen J, et al. Adipocyte morphology and implications for metabolic derangements in acquired obesity. Int J Obes (Lond). 2014. doi:10.1038/ijo.2014.31.

    Google Scholar 

  39. Stienstra R, Stefan N. Tipping the inflammatory balance: inflammasome activation distinguishes metabolically unhealthy from healthy obesity. Diabetologia. 2013;56:2343–6.

    Article  CAS  PubMed  Google Scholar 

  40. Esser N, L'homme L, De Roover A, et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia. 2013;56:2487–97.

    Article  CAS  PubMed  Google Scholar 

  41. Grimsrud PA, Picklo Sr MJ, Griffin TJ, Bernlohr DA. Carbonylation of adipose proteins in obesity and insulin resistance: identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol Cell Proteomics. 2007;6:624–37.

    Article  CAS  PubMed  Google Scholar 

  42. Sabio G, Das M, Mora A, et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science. 2008;322:1539–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Blüher M, Bashan N, Shai I, et al. Activated Ask1-MKK4-p38MAPK/JNK stress signaling pathway in human omental fat tissue may link macrophage infiltration to whole-body Insulin sensitivity. J Clin Endocrinol Metab. 2009;94:2507–15.

    Article  PubMed  Google Scholar 

  44. Harman-Boehm I, Blüher M, Redel H, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab. 2007;92:2240–7.

    Article  CAS  PubMed  Google Scholar 

  45. Han MS, Jung DY, Morel C, et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science. 2013;339:218–22.

    Article  CAS  PubMed  Google Scholar 

  46. Haase J, Weyer U, Immig K, et al. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia. 2014;57:562–71.

    Article  CAS  PubMed  Google Scholar 

  47. Khan S, Wang CH. ER stress in adipocytes and insulin resistance: Mechanisms and significance. Mol Med Rep. 2014;10:2234–40.

    PubMed  Google Scholar 

  48. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306:457–61.

    Article  PubMed  Google Scholar 

  49. Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep. 2012;2:799.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–77.

    Article  CAS  PubMed  Google Scholar 

  51. Singh R, Cuervo AM. Autophagy in the cellular energetic balance. Cell Metab. 2011;13:495–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Zhang Y, Goldman S, Baerga R, et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A. 2009;106:19860–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kosacka J, Koch K, Gericke M, Nowicki M, Heiker JT. Klöting I et a. The polygenetically inherited metabolic syndrome of male WOKW rats is associated with enhanced autophagy in adipose tissue Diabetol Metab Syndr. 2013;5:23.

    CAS  Google Scholar 

  54. Alkhouri N, Gornicka A, Berk MP, et al. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem. 2010;285:3428–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46:2347–55.

    Article  CAS  PubMed  Google Scholar 

  56. Wueest S, Rapold RA, Schumann DM, et al. Deletion of Fas in adipocytes relieves adipose tissue inflammation and hepatic manifestations of obesity in mice. J Clin Invest. 2010;120:191–202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Wueest S, Rapold RA, Schoenle EJ, Konrad D. Fas activation in adipocytes impairs insulin-stimulated glucose uptake by reducing Akt. FEBS Lett. 2010;584:4187–92.

    Article  CAS  PubMed  Google Scholar 

  58. Rapold RA, Wueest S, Knoepfel A, Schoenle EJ, Konrad D. Fas activates lipolysis in a Ca2 + −CaMKII-dependent manner in 3 T3-L1 adipocytes. J Lipid Res. 2013;54:63–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Keuper M, Wernstedt Asterholm I, Scherer PE, et al. TRAIL (TNF-related apoptosis-inducing ligand) regulates adipocyte metabolism by caspase-mediated cleavage of PPARgamma. Cell Death Dis. 2013;4:e474.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Nagel SA, Keuper M, Zagotta I, et al. Up-regulation of Bcl-2 during adipogenesis mediates apoptosis resistance in human adipocytes. Mol Cell Endocrinol. 2014;382:368–76.

    Article  CAS  PubMed  Google Scholar 

  61. Kim J, Lee T, Lee HJ, Kim H. Genotype-environment interactions for quantitative traits in Korea Associated Resource (KARE) cohorts. BMC Genet. 2014;15:18.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Schleinitz D, Böttcher Y, Blüher M, Kovacs P. The genetics of fat distribution. Diabetologia. 2014;57:1276–86.

    Article  CAS  PubMed  Google Scholar 

  63. Malik VS, Popkin BM, Bray GA, Després JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation. 2010;121:1356–64.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Björntorp P. Do stress reactions cause abdominal obesity and comorbidities? Obes Rev. 2001;2:73–86.

    Article  PubMed  Google Scholar 

  65. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    Article  CAS  PubMed  Google Scholar 

  66. Cook KS, Min HY, Johnson D, et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science. 1987;237:402–5.

    Article  CAS  PubMed  Google Scholar 

  67. Flier JS, Cook KS, Usher P, Spiegelman BM. Severely impaired adipsin expression in genetic and acquired obesity. Science. 1987;237:405–8.

    Article  CAS  PubMed  Google Scholar 

  68. Lo JC, Ljubicic S, Leibiger B, et al. Adipsin is an adipokine that improves β cell function in diabetes. Cell. 2014;158:41–53.

    Article  CAS  PubMed  Google Scholar 

  69. Gealekman O, Guseva N, Hartigan C, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123:186–94.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Van Harmelen V, Röhrig K, Hauner H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism. 2004;53:632–7.

    Article  PubMed  Google Scholar 

  71. Bouloumie A, Lolmede K, Sengenes C, Galitzky J, Lafontan M. Angiogenesis in adipose tissue. Ann Endocrinol (Paris). 2002;63:91–5.

    CAS  PubMed  Google Scholar 

  72. Rupnick MA, Panigrahy D, Zhang CY, et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A. 2002;99:10730–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Spencer M, Unal R, Zhu B, et al. Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J Clin Endocrinol Metab. 2011;96:E1990–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Halberg N, Khan T, Trujillo ME, et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009;29:4467–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Dankel SN, Svärd J, Matthä S, et al. COL6A3 expression in adipocytes associates with insulin resistance and depends on PPARγ and adipocyte size. Obesity (Silver Spring). 2014;22:1807–13.

    Article  CAS  PubMed  Google Scholar 

  76. Tan CY, Vidal-Puig A. Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochem Soc Trans. 2008;36:935–40.

    Article  CAS  PubMed  Google Scholar 

  77. Johannsen DL, Tchoukalova Y, Tam CS, et al. Effect of 8 weeks of overfeeding on ectopic fat deposition and insulin sensitivity: testing the ‘’adipose tissue expandability” hypothesis. Diabetes Care. 2014;37:2789–97.

    Article  PubMed  Google Scholar 

  78. Ohlson LO, Larsson B, Svärdsudd K, et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes. 1985;34:1055–8.

    Article  CAS  PubMed  Google Scholar 

  79. Yusuf S, Hawken S, Ounpuu S, et al. INTERHEART Study Investigators. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case–control study. Lancet. 2005;366:1640–9.

    Article  PubMed  Google Scholar 

  80. Pischon T, Boeing H, Hoffmann K, et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359:2105–20.

    Article  CAS  PubMed  Google Scholar 

  81. Nelson TL, Vogler GP, Pedersen NL, Hong Y, Miles TP. Genetic and environmental influences on body fat distribution, fasting insulin levels and CVD: are the influences shared? Twin Res. 2000;3:43–50.

    Article  CAS  PubMed  Google Scholar 

  82. Baker M, Gaukrodger N, Mayosi BM, et al. Association between common polymorphisms of the proopiomelanocortin gene and body fat distribution: a family study. Diabetes. 2005;54:2492–6.

    Article  CAS  PubMed  Google Scholar 

  83. Berndt SI, Gustafsson S, Mägi R, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45:501–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Heid IM, Jackson AU, Randall JC, et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature Genet. 2010;42:949.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Gesta S, Blüher M, Yamamoto Y, et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A. 2006;103:6676–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol. 2012;8:709–16.

    Article  CAS  PubMed  Google Scholar 

  87. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article  CAS  PubMed  Google Scholar 

  88. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013;93:1–21.

    Article  CAS  PubMed  Google Scholar 

  89. Dick KJ, Nelson CP, Tsaprouni L, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383:1990–8.

    Article  CAS  PubMed  Google Scholar 

  90. Dahlman I, Elsen M, Tennagels N, et al. Functional annotation of the human fat cell secretome. Arch Physiol Biochem. 2012;118:84–91.

    Article  CAS  PubMed  Google Scholar 

  91. Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl. 2012;6:91–101.

    Article  CAS  PubMed  Google Scholar 

  92. Blüher M. Adipokines - removing road blocks to obesity and diabetes therapy. Mol Metab. 2014;3:230–40.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Blüher M. Clinical relevance of adipokines. Diab Metab J. 2012;36:317–27.

    Article  Google Scholar 

  94. Sell H, Blüher M, Klöting N, et al. Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care. 2013;36:4083–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

No potential conflict of interest relevant to this article needs to be reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Blüher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klöting, N., Blüher, M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord 15, 277–287 (2014). https://doi.org/10.1007/s11154-014-9301-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-014-9301-0

Keywords

Navigation