Skip to main content

Advertisement

Log in

Control of body weight versus tumorigenesis by concerted action of leptin and estrogen

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Improper body weight control is most critical to the development of morbid obesity, which is often associated with alternation in leptin (Ob) signaling in the central nervous system. Leptin acts to control fat mass through the regulation of both food intake and energy expenditure. In addition to the primary action in metabolic signaling, leptin has also been found to play a role in reproduction and even in breast tumorigenesis in obese patients. Interestingly, estrogen, a sex hormone, has also been recognized as another crucial factor for energy balance and breast tumorigenesis in obese subjects. Obesity in postmenopausal women has been associated with higher risk of breast cancer. There are substantial data in the literature on the connection of estrogen and leptin pathways in development of obesity and breast cancer. In this review, we discuss the cross-talk of leptin and estrogen signaling pathways in body weight control and breast cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barness LA, Opitz JM, Gilbert-Barness E. Obesity: genetic, molecular, and environmental aspects. Am J Med Genet A. 2007;143A(24):3016–34.

    Article  PubMed  CAS  Google Scholar 

  2. Tchernof A, Poehlman ET, Despres JP. Body fat distribution, the menopause transition, and hormone replacement therapy. (Translated from eng). Diabetes Metab. 2000;26(1):12–20 (in eng).

    PubMed  CAS  Google Scholar 

  3. Wake DJ et al. Intra-adipose sex steroid metabolism and body fat distribution in idiopathic human obesity. (Translated from eng). Clin Endocrinol (Oxf). 2007;66(3):440–6 (in eng).

    Article  CAS  Google Scholar 

  4. Zhang Y et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  PubMed  CAS  Google Scholar 

  5. Percik R, Stumvoll M. Obesity and cancer. Exp Clin Endocrinol Diabetes. 2009;117(10):563–6.

    Article  PubMed  CAS  Google Scholar 

  6. Pischon T, Nothlings U, Boeing H. Obesity and cancer. Proc Nutr Soc. 2008;67(2):128–45.

    Article  PubMed  Google Scholar 

  7. Asseryanis E, Ruecklinger E, Hellan M, Kubista E, Singer CF. Breast cancer size in postmenopausal women is correlated with body mass index and androgen serum levels. Gynecol Endocrinol. 2004;18(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  8. Saxena NK et al. Bidirectional crosstalk between leptin and insulin-like growth factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor. Cancer Res. 2008;68(23):9712–22.

    Article  PubMed  CAS  Google Scholar 

  9. He Z et al. Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase. (Translated from eng). Proc Natl Acad Sci U S A. 2013;110(1):E79–88 (in eng).

    Article  PubMed  CAS  Google Scholar 

  10. Clement K et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. (Translated from eng). Nature. 1998;392(6674):398–401 (in eng).

    Article  PubMed  CAS  Google Scholar 

  11. Bates SH et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. (Translated from eng). Nature. 2003;421(6925):856–9 (in eng).

    Article  PubMed  CAS  Google Scholar 

  12. Cook WS, Unger RH. Protein tyrosine phosphatase 1B: a potential leptin resistance factor of obesity. (Translated from eng). Dev Cell. 2002;2(4):385–7 (in eng).

    Article  PubMed  CAS  Google Scholar 

  13. Gao Q et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. (Translated from eng). Proc Natl Acad Sci U S A. 2004;101(13):4661–6 (in eng).

    Article  PubMed  CAS  Google Scholar 

  14. Mori H et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. (Translated from eng). Nat Med. 2004;10(7):739–43 (in eng).

    Article  PubMed  CAS  Google Scholar 

  15. Zhang EE, Chapeau E, Hagihara K, Feng GS. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. (Translated from eng). Proc Natl Acad Sci U S A. 2004;101(45):16064–9 (in eng).

    Article  PubMed  CAS  Google Scholar 

  16. He Z et al. Shp2 controls female body weight and energy balance by integrating leptin and estrogen signals. (Translated from eng). Mol Cell Biol. 2012;32(10):1867–78 (in eng).

    Article  PubMed  CAS  Google Scholar 

  17. Qiu J, Ogus S, Mounzih K, Ewart-Toland A, Chehab FF. Leptin-deficient mice backcrossed to the BALB/cJ genetic background have reduced adiposity, enhanced fertility, normal body temperature, and severe diabetes. Endocrinology. 2001;142(8):3421–5.

    Article  PubMed  CAS  Google Scholar 

  18. Malik NM et al. Leptin requirement for conception, implantation, and gestation in the mouse. Endocrinology. 2001;142(12):5198–202.

    Article  PubMed  CAS  Google Scholar 

  19. Mounzih K, Lu R, Chehab FF. Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology. 1997;138(3):1190–3.

    Article  PubMed  CAS  Google Scholar 

  20. Barash IA et al. Leptin is a metabolic signal to the reproductive system. Endocrinology. 1996;137(7):3144–7.

    Article  PubMed  CAS  Google Scholar 

  21. Chehab FF, Lim ME, Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet. 1996;12(3):318–20.

    Article  PubMed  CAS  Google Scholar 

  22. Dogan S et al. Effects of high-fat diet and/or body weight on mammary tumor leptin and apoptosis signaling pathways in MMTV-TGF-alpha mice. Breast Cancer Res. 2007;9(6):R91.

    Article  PubMed  Google Scholar 

  23. Cleary MP et al. Genetically obese MMTV-TGF-alpha/Lep(ob)Lep(ob) female mice do not develop mammary tumors. Breast Cancer Res Treat. 2003;77(3):205–15.

    Article  PubMed  CAS  Google Scholar 

  24. Cleary MP et al. Leptin receptor-deficient MMTV-TGF-alpha/Lepr(db)Lepr(db) female mice do not develop oncogene-induced mammary tumors. Exp Biol Med (Maywood). 2004;229(2):182–93.

    CAS  Google Scholar 

  25. Maccio A et al. Correlation of body mass index and leptin with tumor size and stage of disease in hormone-dependent postmenopausal breast cancer: preliminary results and therapeutic implications. J Mol Med. 2010;88(7):677–86.

    Article  PubMed  CAS  Google Scholar 

  26. Liu CL et al. The roles of serum leptin concentration and polymorphism in leptin receptor gene at codon 109 in breast cancer. Oncology. 2007;72(1–2):75–81.

    Article  PubMed  CAS  Google Scholar 

  27. Revillion F et al. Messenger RNA expression of leptin and leptin receptors and their prognostic value in 322 human primary breast cancers. Clin Cancer Res. 2006;12(7 Pt 1):2088–94.

    Article  PubMed  CAS  Google Scholar 

  28. Jarde T et al. Leptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma. Oncol Rep. 2008;19(4):905–11.

    PubMed  Google Scholar 

  29. Han C et al. Serum levels of leptin, insulin, and lipids in relation to breast cancer in china. Endocrine. 2005;26(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  30. Snoussi K et al. Leptin and leptin receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma. BMC Cancer. 2006;6:38.

    Article  PubMed  Google Scholar 

  31. Miyoshi Y et al. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. Int J Cancer. 2006;118(6):1414–9.

    Article  PubMed  CAS  Google Scholar 

  32. Tessitore L et al. Adipocyte expression and circulating levels of leptin increase in both gynaecological and breast cancer patients. Int J Oncol. 2004;24(6):1529–35.

    PubMed  CAS  Google Scholar 

  33. Ishikawa M, Kitayama J, Nagawa H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin Cancer Res. 2004;10(13):4325–31.

    Article  PubMed  CAS  Google Scholar 

  34. Geisler J, Haynes B, Ekse D, Dowsett M, Lonning PE. Total body aromatization in postmenopausal breast cancer patients is strongly correlated to plasma leptin levels. J Steroid Biochem Mol Biol. 2007;104(1–2):27–34.

    Article  PubMed  CAS  Google Scholar 

  35. Magoffin DA, Weitsman SR, Aagarwal SK, Jakimiuk AJ. Leptin regulation of aromatase activity in adipose stromal cells from regularly cycling women. Ginekol Pol. 1999;70(1):1–7.

    PubMed  CAS  Google Scholar 

  36. Ozet A et al. Effects of tamoxifen on the serum leptin level in patients with breast cancer. Jpn J Clin Oncol. 2001;31(9):424–7.

    Article  PubMed  CAS  Google Scholar 

  37. Marttunen MB et al. Antiestrogenic tamoxifen and toremifene increase serum leptin levels in postmenopausal breast cancer patients. Maturitas. 2000;35(2):175–9.

    Article  PubMed  CAS  Google Scholar 

  38. Sariego J. Breast cancer in the young patient. (Translated from eng). Am Surg. 2010;76(12):1397–400 (in eng).

    PubMed  Google Scholar 

  39. Schiff R, Osborne CK. Endocrinology and hormone therapy in breast cancer: new insight into estrogen receptor-alpha function and its implication for endocrine therapy resistance in breast cancer. (Translated from eng). Breast Cancer Res. 2005;7(5):205–11 (in eng).

    Article  PubMed  CAS  Google Scholar 

  40. Couse JF, Lindzey J, Grandien K, Gustafsson J-A, Korach KS. Tissue Distribution and Quantitative Analysis of Estrogen Receptor-{alpha} (ER{alpha}) and Estrogen Receptor-{beta} (ER{beta}) Messenger Ribonucleic Acid in the Wild-Type and ER{alpha}-Knockout Mouse. Endocrinology. 1997;138(11):4613–21.

    Article  PubMed  CAS  Google Scholar 

  41. Geisler JG et al. Estrogen can prevent or reverse obesity and diabetes in mice expressing human islet amyloid polypeptide. Diabetes. 2002;51(7):2158–69.

    Article  PubMed  CAS  Google Scholar 

  42. Liang YQ et al. Estrogen receptor beta is involved in the anorectic action of estrogen. Int J Obes Relat Metab Disord. 2002;26(8):1103–9.

    Article  PubMed  CAS  Google Scholar 

  43. Cave NJ, Backus RC, Marks SL, Klasing KC. Oestradiol, but not genistein, inhibits the rise in food intake following gonadectomy in cats, but genistein is associated with an increase in lean body mass. J Anim Physiol Anim Nutr (Berl). 2007;91(9–10):400–10.

    Article  CAS  Google Scholar 

  44. Murata Y, Robertson KM, Jones ME, Simpson ER. Effect of estrogen deficiency in the male: the ArKO mouse model. (Translated from eng). Mol Cell Endocrinol. 2002;193(1–2):7–12 (in eng).

    Article  PubMed  CAS  Google Scholar 

  45. Musatov S et al. Silencing of estrogen receptor alpha in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104(7):2501–6.

    Article  PubMed  CAS  Google Scholar 

  46. Ohlsson C et al. Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice. Biochem Biophys Res Commun. 2000;278(3):640–5.

    Article  PubMed  CAS  Google Scholar 

  47. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A. 2000;97(23):12729–34.

    Article  PubMed  CAS  Google Scholar 

  48. Cooke PS, Heine PA, Taylor JA, Lubahn DB. The role of estrogen and estrogen receptor-alpha in male adipose tissue. Mol Cell Endocrinol. 2001;178(1–2):147–54.

    Article  PubMed  CAS  Google Scholar 

  49. Gao Q et al. Anorectic estrogen mimics leptin’s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med. 2007;13(1):89–94.

    Article  PubMed  CAS  Google Scholar 

  50. Naaz A et al. Effect of ovariectomy on adipose tissue of mice in the absence of estrogen receptor alpha (ERalpha): a potential role for estrogen receptor beta (ERbeta). Horm Metab Res. 2002;34(11–12):758–63.

    Article  PubMed  CAS  Google Scholar 

  51. Nilsson M et al. Oestrogen receptor alpha gene expression levels are reduced in obese compared to normal weight females. Int J Obes (Lond). 2007;31(6):900–7.

    Article  CAS  Google Scholar 

  52. Meza-Munoz DE, Fajardo ME, Perez-Luque EL, Malacara JM. Factors associated with estrogen receptors-alpha (ER-alpha) and -beta (ER-beta) and progesterone receptor abundance in obese and non obese pre- and post-menopausal women. Steroids. 2006;71(6):498–503.

    Article  PubMed  CAS  Google Scholar 

  53. Okura T et al. Association of polymorphisms in the estrogen receptor alpha gene with body fat distribution. Int J Obes Relat Metab Disord. 2003;27(9):1020–7.

    Article  PubMed  CAS  Google Scholar 

  54. Gu JM et al. Association between VDR and ESR1 gene polymorphisms with bone and obesity phenotypes in Chinese male nuclear families. Acta Pharmacol Sin. 2009;30(12):1634–42.

    Article  PubMed  CAS  Google Scholar 

  55. Goulart AC, Zee RY, Rexrode KM. Estrogen receptor 1 gene polymorphisms and decreased risk of obesity in women. Metabolism. 2009;58(6):759–64.

    Article  PubMed  CAS  Google Scholar 

  56. Jian WX et al. Estrogen receptor alpha gene relationship with peak bone mass and body mass index in Chinese nuclear families. J Hum Genet. 2005;50(9):477–82.

    Article  PubMed  CAS  Google Scholar 

  57. Dieudonne MN, Leneveu MC, Giudicelli Y, Pecquery R. Evidence for functional estrogen receptors alpha and beta in human adipose cells: regional specificities and regulation by estrogens. Am J Physiol Cell Physiol. 2004;286(3):C655–61.

    Article  PubMed  CAS  Google Scholar 

  58. Dang Z, Lowik CW. The balance between concurrent activation of ERs and PPARs determines daidzein-induced osteogenesis and adipogenesis. J Bone Miner Res. 2004;19(5):853–61.

    Article  PubMed  CAS  Google Scholar 

  59. Okazaki R et al. Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology. 2002;143(6):2349–56.

    Article  PubMed  CAS  Google Scholar 

  60. Pico C, Puigserver P, Oliver P, Palou A. 2-Methoxyestradiol, an endogenous metabolite of 17beta-estradiol, inhibits adipocyte proliferation. Mol Cell Biochem. 1998;189(1–2):1–7.

    Article  PubMed  CAS  Google Scholar 

  61. Tagawa N et al. 17Beta-estradiol inhibits 11beta-hydroxysteroid dehydrogenase type 1 activity in rodent adipocytes. J Endocrinol. 2009;202(1):131–9.

    Article  PubMed  CAS  Google Scholar 

  62. Ueki S et al. Regulation of peroxisome proliferator-activated receptor-gamma expression in human eosinophils by estradiol. Int Arch Allergy Immunol. 2009;149 Suppl 1:51–6.

    Article  PubMed  CAS  Google Scholar 

  63. Foryst-Ludwig A et al. Metabolic actions of estrogen receptor beta (ERbeta) are mediated by a negative cross-talk with PPARgamma. PLoS Genet. 2008;4(6):e1000108.

    Article  PubMed  Google Scholar 

  64. Gambino YP et al. 17Beta-estradiol enhances leptin expression in human placental cells through genomic and nongenomic actions. Biol Reprod. 2010;83(1):42–51.

    Article  PubMed  CAS  Google Scholar 

  65. Gonzalez RR et al. Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J Biol Chem. 2006;281(36):26320–8.

    Article  PubMed  CAS  Google Scholar 

  66. Garofalo C, Sisci D, Surmacz E. Leptin interferes with the effects of the antiestrogen ICI 182,780 in MCF-7 breast cancer cells. Clin Cancer Res. 2004;10(19):6466–75.

    Article  PubMed  CAS  Google Scholar 

  67. Dieudonne MN et al. Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2002;293(1):622–8.

    Article  PubMed  CAS  Google Scholar 

  68. Koda M, Sulkowska M, Kanczuga-Koda L, Jarzabek K, Sulkowski S. Expression of leptin and its receptor in female breast cancer in relation with selected apoptotic markers. Folia Histochem Cytobiol. 2007;45 Suppl 1:S187–91.

    PubMed  Google Scholar 

  69. Saxena NK, Vertino PM, Anania FA, Sharma D. leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. J Biol Chem. 2007;282(18):13316–25.

    Article  PubMed  CAS  Google Scholar 

  70. Yin N et al. Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin. Cancer Res. 2004;64(16):5870–5.

    Article  PubMed  CAS  Google Scholar 

  71. Jiang H, Yu J, Guo H, Song H, Chen S. Upregulation of survivin by leptin/STAT3 signaling in MCF-7 cells. Biochem Biophys Res Commun. 2008;368(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  72. Okumura M et al. Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-alpha and PPAR expression. Biochim Biophys Acta. 2002;1592(2):107–16.

    PubMed  CAS  Google Scholar 

  73. Catalano S et al. Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. J Biol Chem. 2004;279(19):19908–15.

    Article  PubMed  CAS  Google Scholar 

  74. Perera CN, Chin HG, Duru N, Camarillo IG. Leptin-regulated gene expression in MCF-7 breast cancer cells: mechanistic insights into leptin-regulated mammary tumor growth and progression. J Endocrinol. 2008;199(2):221–33.

    Article  PubMed  CAS  Google Scholar 

  75. Ray A, Nkhata KJ, Cleary MP. Effects of leptin on human breast cancer cell lines in relationship to estrogen receptor and HER2 status. Int J Oncol. 2007;30(6):1499–509.

    PubMed  CAS  Google Scholar 

  76. Binai NA et al. Expression of estrogen receptor alpha increases leptin-induced STAT3 activity in breast cancer cells. (Translated from eng). Int J Cancer. 2010;127(1):55–66 (in eng).

    Article  PubMed  CAS  Google Scholar 

  77. McMurtry V, Simeone AM, Nieves-Alicea R, Tari AM. Leptin utilizes Jun N-terminal kinases to stimulate the invasion of MCF-7 breast cancer cells. (Translated from eng). Clin Exp Metastasis. 2009;26(3):197–204 (in eng).

    Article  PubMed  CAS  Google Scholar 

  78. Ainslie DA et al. Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. (Translated from eng). Int J Obes Relat Metab Disord. 2001;25(11):1680–8 (in eng).

    Article  PubMed  CAS  Google Scholar 

  79. Otukonyong EE et al. Effect of food deprivation and leptin repletion on the plasma levels of estrogen (E2) and NADPH-d reactivity in the ventromedial and arcuate nuclei of the hypothalamus in the female rats. (Translated from eng). Brain Res. 2000;887(1):70–9 (in eng).

    Article  PubMed  CAS  Google Scholar 

  80. Yu W et al. Regulation of estrogen receptors alpha and beta in human breast carcinoma by exogenous leptin in nude mouse xenograft model. Chin Med J (Engl). 2010;123(3):337–43.

    CAS  Google Scholar 

  81. Cleary MP, Grande JP, Juneja SC, Maihle NJ. Diet-induced obesity and mammary tumor development in MMTV-neu female mice. Nutr Cancer. 2004;50(2):174–80.

    Article  PubMed  Google Scholar 

  82. Tanaka M et al. Effects of estrogen on serum leptin levels and leptin mRNA expression in adipose tissue in rats. (Translated from eng). Horm Res. 2001;56(3–4):98–104 (in eng).

    Article  PubMed  CAS  Google Scholar 

  83. Shimizu H et al. Estrogen increases in vivo leptin production in rats and human subjects. (Translated from eng). J Endocrinol. 1997;154(2):285–92 (in eng).

    Article  PubMed  CAS  Google Scholar 

  84. Meli R et al. Estrogen and raloxifene modulate leptin and its receptor in hypothalamus and adipose tissue from ovariectomized rats. (Translated from eng). Endocrinology. 2004;145(7):3115–21 (in eng).

    Article  PubMed  CAS  Google Scholar 

  85. Nkhata KJ, Ray A, Dogan S, Grande JP, Cleary MP. Mammary tumor development from T47-D human breast cancer cells in obese ovariectomized mice with and without estradiol supplements. Breast Cancer Res Treat. 2009;114(1):71–83.

    Article  PubMed  CAS  Google Scholar 

  86. Fusco R et al. Cellular and molecular crosstalk between leptin receptor and estrogen receptor-{alpha} in breast cancer: molecular basis for a novel therapeutic setting. Endocr Relat Cancer. 2010;17(2):373–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to apologize for not citing many other papers due to space restriction. Work in authors’ laboratory has been supported by American Diabetes Association (ADA-1-13-BS-048) to G.S.F.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao He or Gen-Sheng Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Z., Feng, GS. Control of body weight versus tumorigenesis by concerted action of leptin and estrogen. Rev Endocr Metab Disord 14, 339–345 (2013). https://doi.org/10.1007/s11154-013-9277-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9277-1

Keywords

Navigation