Skip to main content

Advertisement

Log in

Endometrial regeneration and endometrial stem/progenitor cells

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The functional layer of the human endometrium is a highly regenerative tissue undergoing monthly cycles of growth, differentiation and shedding during a woman’s reproductive years. Fluctuating levels of circulating estrogen and progesterone orchestrate this dramatic remodeling of human endometrium. The thin inactive endometrium of postmenopausal women which resembles the permanent basal layer of cycling endometrium retains the capacity to respond to exogenous sex steroid hormones to regenerate into a thick functional endometrium capable of supporting pregnancy. Endometrial regeneration also follows parturition and endometrial resection. In non menstruating rodents, endometrial epithelium undergoes rounds of proliferation and apoptosis during estrus cycles. The recent identification of adult stem cells in both human and mouse endometrium suggests that epithelial progenitor cells and the mesenchymal stem/stromal cells have key roles in the cyclical regeneration of endometrial epithelium and stroma. This review will summarize the evidence for endometrial stem/progenitor cells, examine their role in mouse models of endometrial epithelial repair and estrogen-induced endometrial regeneration, and also describe the generation of endometrial-like epithelium from human embryonic stem cells. With markers now available for identifying endometrial mesenchymal stem/stromal cells, their possible role in gynecological diseases associated with abnormal endometrial proliferation and their potential application in cell-based therapies to regenerate reproductive and other tissues will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13:87–101.

    Article  PubMed  CAS  Google Scholar 

  2. Jabbour HN, Kelly RW, Fraser HM, Critchley HOD. Endocrine regulation of menstruation. Endocr Rev. 2006;27:17–46.

    Article  PubMed  CAS  Google Scholar 

  3. McLennan CE, Rydell AH. Extent of endometrial shedding during normal menstruation. Obstet Gynecol. 1965;26:605–21.

    PubMed  CAS  Google Scholar 

  4. Padykula HA. Regeneration of the primate uterus: the role of stem cells. Ann N Y Acad Sci. 1991;622:47–56.

    Article  PubMed  CAS  Google Scholar 

  5. Spencer TE, Hayashi K, Hu J, Carpenter KD. Comparative developmental biology of the mammalian uterus. Curr Top Dev Biol. 2005;68:85–122.

    Article  PubMed  CAS  Google Scholar 

  6. Ferenczy A, Bergeron C. Histology of the human endometrium: from birthe to senescence. Ann N Y Acad Sci. 1991;622:6–27.

    Article  PubMed  CAS  Google Scholar 

  7. Ettinger B, Bainton L, Upmalis DH, Citron JT, Vangessel A. Comparison of endometrial growth produced by unopposed conjugated estrogens or by micronized estradiol in postmenopausal women. Am J Obstet Gynecol. 1997;176:112–7.

    Article  PubMed  CAS  Google Scholar 

  8. Paulson RJ, Boostanfar R, Saadat P, Mor E, Tourgeman DE, Slater CC, Francis MM, Jain JK. Pregnancy in the sixth decade of life: obstetric outcomes in women of advanced reproductive age. JAMA. 2002;288:2320–3.

    Article  PubMed  Google Scholar 

  9. Sauer MV, Miles RA, Dahmoush L, Paulson RJ, Press M, Moyer D. Evaluating the effect of age on endometrial responsiveness to hormone replacement therapy: a histologic ultrasonographic, and tissue receptor analysis. J Assist Reprod Genet. 1993;10:47–52.

    Article  PubMed  CAS  Google Scholar 

  10. Klaassens AH, van Wijk FH, Hanifi-Moghaddam P, Sijmons B, Ewing PC, Ten Kate-Booij MJ, Kooi GS, Kloosterboer HJ, Blok LJ, Burger CW. Histological and immunohistochemical evaluation of postmenopausal endometrium after 3 weeks of treatment with tibolone, estrogen only, or estrogen plus progestagen. Fertil Steril. 2006;86:352–61.

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen HPT, Sprung CN, Gargett CE. Differential expression of Wnt signaling molecules between pre- and postmenopausal endometrial epithelial cells suggests a population of putative epithelial stem/progenitor cells reside in the basalis layer. Endocrinol. 2012;153:2870–83.

    Article  CAS  Google Scholar 

  12. Gaide Chevronnay HP, Galant C, Lemoine P, Courtoy PJ, Marbaix E, Henriet P. Spatiotemporal coupling of focal extracellular matrix degradation and reconstruction in the menstrual human endometrium. Endocrinology. 2009;150:5094–105.

    Article  PubMed  CAS  Google Scholar 

  13. Henriet P, Gaide Chevronnay HP, Marbaix E. The endocrine and paracrine control of menstruation. Mol Cell Endocrinol. 2011.

  14. Maybin J, Critchley H. Repair and regeneration of the human endometrium. Expert Rev Obstet Gynecol. 2009;4:283–98.

    Article  Google Scholar 

  15. Ludwig H, Metzger H, Frauli M. Endometrium: tissue remodelling and regeneration. In: D’Arcangues C, Fraser IS, Newton JR, Odlind V, editors. Contraception and mechanisms of endometrial bleeding. Cambridge University Press; 1990. 441–6.

  16. Okulicz WC, Scarrell R. Estrogen receptor α and progesterone receptor in the rhesus endometrium during the late secretory phase and menses. Proc Soc Exp Biol Med. 1998;218:316–21.

    PubMed  CAS  Google Scholar 

  17. Kaitu’u-Lino TJ, Morison NB, Salamonsen LA. Estrogen is not essential for full endometrial restoration after breakdown: lessons from a mouse model. Endocrinol. 2007;148:5105–11.

    Article  CAS  Google Scholar 

  18. Garry R, Hart R, Karthigasu KA, Burke C. A re-appraisal of the morphological changes within the endometrium during menstruation: a hysteroscopic, histological and scanning electron microscopic study. Hum Reprod. 2009;24:1393–401.

    Article  PubMed  CAS  Google Scholar 

  19. Garry R, Hart R, Karthigasu KA, Burke C. Structural changes in endometrial basal glands during menstruation. BJOG. 2010;117:1175–85.

    Article  PubMed  CAS  Google Scholar 

  20. Cao W, Mah K, Carroll RS, Slayden OD, Brenner RM. Progesterone withdrawal up-regulates fibronectin and integrins during menstruation and repair in the rhesus macaque endometrium. Hum Reprod. 2007;22:3223–31.

    Article  PubMed  CAS  Google Scholar 

  21. Evans J, Kaitu’u-Lino T, Salamonsen LA. Extracellular matrix dynamics in scar-free endometrial repair: perspectives from mouse in vivo and human in vitro studies. Biol Reprod. 2011;85:511–23.

    Article  PubMed  CAS  Google Scholar 

  22. Ferenczy A, Bertrand G, Gelfand MM. Proliferation kinetics of human endometrium during the normal menstrual cycle. Am J Obstet Gynecol. 1979;133:859–67.

    PubMed  CAS  Google Scholar 

  23. Padykula HA, Coles LG, Okulicz WC, Rapaport SI, McCracken JA, King Jr NW, Longcope C, Kaiserman-Abramof IR. The basalis of the primate endometrium: a bifunctional germinal compartment. Biol Reprod. 1989;40:681–90.

    Article  PubMed  CAS  Google Scholar 

  24. Brenner RM, Slayden OD, Rodgers WH, Critchley HOD, Carroll R, Nie XJ, Mah K. Immunocytochemical assessment of mitotic activity with an antibody to phosphorylated histone H3 in the macaque and human endometrium. Hum Reprod. 2003;18:1185–93.

    Article  PubMed  CAS  Google Scholar 

  25. Gargett CE, Rogers PAW. Human endometrial angiogenesis. Reproduction. 2001;121:181–6.

    Article  PubMed  CAS  Google Scholar 

  26. Slayden OD, Brenner RM. Hormonal regulation and localization of estrogen, progestin and androgen receptors in the endometrium of nonhuman primates: effects of progesterone receptor antagonists. Arch Histol Cytol. 2004;67:393–409.

    Article  PubMed  CAS  Google Scholar 

  27. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev. 1999;20:358–417.

    Article  PubMed  CAS  Google Scholar 

  28. Cooke PS, Buchanan DL, Young P, Setiawan T, Brody J, Korach KS, Taylor J, Lubahn DB, Cunha GR. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci U S A. 1997;94:6535–40.

    Article  PubMed  CAS  Google Scholar 

  29. Kurita T, Medina R, Schabel AB, Young P, Gama P, Parekh TV, Brody J, Cunha GR, Osteen KG, Bruner-Tran KL, Gold LI. The activation function-1 domain of estrogen receptor alpha in uterine stromal cells is required for mouse but not human uterine epithelial response to estrogen. Differentiation. 2005;73:313–22.

    Article  PubMed  CAS  Google Scholar 

  30. Tong W, Niklaus A, Zhu L, Pan H, Chen B, Aubuchon M, Santoro N, Pollard JW. Estrogen and progesterone regulation of cell proliferation in the endometrium of muridae and humans. In: Aplin JD, Fazleabas A, Glasser SR, Giudice LC, editors. The Endometrium. Molecular, cellular, and clinical perspectives. 2nd ed. London: Informa Healthcare; 2008. p. 99–122.

    Chapter  Google Scholar 

  31. van der Horst PH, Wang Y, van der Zee M, Burger CW, Blok LJ. Interaction between sexhormones and WNT/beta-catenin signal transduction in endometrial physiology and disease. Mol Cell Endocrinol. 2011. doi:10.1016/j.mce.2011.06.010.

  32. Hou XN, Tan Y, Li ML, Dey SK, Das SK. Canonical Wnt signaling is critical to estrogen-mediated uterine growth. Mol Endocrinol. 2004;18:3035–49.

    Article  PubMed  CAS  Google Scholar 

  33. Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of β−catenin. Proc Natl Acad Sci U S A. 2004;101:2882–7.

    Article  PubMed  CAS  Google Scholar 

  34. Critchley HOD, Brenner RM, Henderson TA, Williams K, Nayak NR, Slayden OD, Millar MR, Saunders PTK. Estrogen receptor β, but not estrogen receptor α, is present in the vascular endothelium of the human and nonhuman primate endometrium. J Clin Endocrinol Metab. 2001;86:1370–8.

    Article  PubMed  CAS  Google Scholar 

  35. Lecce G, Meduri G, Ancelin M, Bergeron C, Perrot-Applanat M. Presence of estrogen receptor β in the human endometrium through the cycle: expression in glandular, stromal, and vascular cells. J Clin Endocrinol Metab. 2001;86:1379–86.

    Article  PubMed  CAS  Google Scholar 

  36. Wada-Hiraike O, Hiraike H, Okinaga H, Imamov O, Barros RPA, Morani A, Omoto Y, Warner M, Gustafsson JA. Role of estrogen receptor β in uterine stroma and epithelium: insights from estrogen receptor β-/- mice. Proc Natl Acad Sci U S A. 2006;103:18350–5.

    Article  PubMed  CAS  Google Scholar 

  37. Salamonsen LA. Tissue injury and repair in the female human reproductive tract. Reproduction. 2003;125:301–11.

    Article  PubMed  CAS  Google Scholar 

  38. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22:2903–11.

    Article  PubMed  CAS  Google Scholar 

  39. Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T, Arase T, Oda H, Uchida H, Asada H, Ito M, Yoshimura N, Maruyama T, Okano H. Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One. 2010;5:e10387.

    Article  PubMed  CAS  Google Scholar 

  40. Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16:818–34.

    Article  PubMed  CAS  Google Scholar 

  41. Maruyama T, Masuda H, Ono M, Kajitani T, Yoshimura Y. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction. 2010;140:11–22.

    Article  PubMed  CAS  Google Scholar 

  42. Du HL, Taylor HS. Stem cells and reproduction. Curr Opin Obstet Gynecol. 2010;22:235–41.

    Article  PubMed  Google Scholar 

  43. Chan RWS, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70:1738–50.

    Article  PubMed  CAS  Google Scholar 

  44. Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril. 2005;84 Suppl 2:1124–30.

    Article  PubMed  CAS  Google Scholar 

  45. Gargett CE, Schwab KE, Zillwood RM, Nguyen HPT, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80:1136–45.

    Article  PubMed  CAS  Google Scholar 

  46. Dominici M, Le BK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  PubMed  CAS  Google Scholar 

  47. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997;88:287–98.

    Article  PubMed  CAS  Google Scholar 

  48. Wolff EF, Wolff AB, Du H, Taylor HS. Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod Sci. 2007;14:524–33.

    Article  PubMed  CAS  Google Scholar 

  49. Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, Taylor HS. Endometrial stem cell transplantation restores dopamine production in a parkinson’s disease model. J Cell Mol Med. 2010;15:747–55.

    Article  CAS  Google Scholar 

  50. Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther. 2011;19:2065–71.

    Article  PubMed  CAS  Google Scholar 

  51. Dimitrov R, Timeva T, Kyurkchiev D, Stamenova M, Shterev A, Kostova P, Zlatkov V, Kehayov I, Kyurkchiev S. Characterisation of clonogenic stromal cells isolated from human endometrium. Reprod. 2008;135:551–8.

    Article  CAS  Google Scholar 

  52. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria MA, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 1997;12:1337–45.

    Article  Google Scholar 

  53. Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells. 2006;24:3–12.

    Article  PubMed  Google Scholar 

  54. Cervello I, Gil-Sanchis C, Mas A, Gado-Rosas F, Martinez-Conejero JA, Galan A, Martinez-Romero A, Martinez S, Navarro I, Ferro J, Horcajadas JA, Esteban FJ, O’Connor JE, Pellicer A, Simon C. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010;5:e10964.

    Article  PubMed  CAS  Google Scholar 

  55. Tsuji S, Yoshimoto M, Takahashi K, Noda Y, Nakahata T, Heike T. Side population cells contribute to the genesis of human endometrium. Fertil Steril. 2008;90:1528–37.

    Article  PubMed  Google Scholar 

  56. Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, Asanoma K, Kyo S, Nakahata T, Wake N. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22:1214–23.

    Article  PubMed  CAS  Google Scholar 

  57. Hu FF, Jing X, Cui YG, Qian XQ, Mao YD, Liao LM, Liu JY. Isolation and characterization of side population cells in the postpartum murine endometrium. Reprod Sci. 2010;17:629–42.

    Article  PubMed  CAS  Google Scholar 

  58. Xu J, Hu FF, Cui YG, Luo J, Jiang CY, Gao L, Qian XQ, Mao YD, Liu JY. Effect of estradiol on proliferation and differentiation of side population stem/progenitor cells from murine endometrium. Reprod Biol Endocrinol. 2011;9:103.

    Article  PubMed  CAS  Google Scholar 

  59. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.

    Article  PubMed  CAS  Google Scholar 

  60. Gargett CE, Ye L. Endometrial reconstruction from stem cells. Fertil Steril. 2012. doi:10.1016/j.fertnstert.2012.05.004:.

  61. Spitzer TL, Rojas A, Zelenko Z, Aghajanova L, Erikson DW, Barragan F, Meyer M, Tamaresis JS, Hamilton AE, Irwin JC, Giudice LC. Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. Biol Reprod. 2012;86:58, 1–16.

    Article  PubMed  CAS  Google Scholar 

  62. Murphy MP, Wang H, Patel AN, Kambhampati S, Angle N, Chan K, Marleau AM, Pyszniak A, Carrier E, Ichim TE, Riordan NH. Allogeneic endometrial regenerative cells: an “Off the shelf solution” for critical limb ischemia? J Transl Med. 2008;6:45.

    Article  PubMed  CAS  Google Scholar 

  63. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol. 2009;217:318–24.

    Article  PubMed  CAS  Google Scholar 

  64. Masuda H, Anwar SS, Buhring HJ, Rao JR, Gargett CE. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant. 2012. doi:10.3727/096368911X637362:.

  65. Schuring AN, Schulte N, Kelsch R, Ropke A, Kiesel L, Gotte M. Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertil Steril. 2011;95:423–6.

    Article  PubMed  Google Scholar 

  66. Koks CM, Groothuis PG, Dunselman GJ, de Goeij AM, Evers JH. Adhesion of shed menstrual tissue in an in-vitro model using amnion and peritoneum: a light and electron microscopic study. Hum Reprod. 1999;14:816–22.

    Article  PubMed  CAS  Google Scholar 

  67. Cui CH, Uyama T, Miyado K, Terai M, Kyo S, Kiyono T, Umezawa A. Menstrual blood-derived cells confer human dystrophin expression in the murine model of duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Mol Biol Cell. 2007;18:1586–94.

    Article  PubMed  CAS  Google Scholar 

  68. Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, Mori T, Miyado K, Ikegami Y, Cui CH, Kiyono T, Kyo S, Shimizu T, Okano T, Sakamoto M, Ogawa S, Umezawa A. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008;26:1695–704.

    Article  PubMed  CAS  Google Scholar 

  69. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, Thebaud B, Riordan NH. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007;5:57.

    Article  PubMed  CAS  Google Scholar 

  70. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant. 2008;17:303–11.

    Article  PubMed  Google Scholar 

  71. Anwar S, Buhring HJ, Gargett CE. A single perivascular marker identifies MSC in human endometrium and menstrual blood. Aust Health Med Res Congr. 2008;4:P700.

    Google Scholar 

  72. Musina RA, Belyavski AV, Tarusova OV, Solovyova EV, Sukhikh GT. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;145:539–43.

    Article  PubMed  CAS  Google Scholar 

  73. Sasson IE, Taylor HS. Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci. 2008;1127:106–15.

    Article  PubMed  Google Scholar 

  74. Starzinski-Powitz A, Zeitvogel A, Schreiner A, Baumann R. In search of pathogenic mechanims in endometriosis: the challenge for molecular cell biology. Curr Mol Med. 2001;1:655–64.

    Article  PubMed  CAS  Google Scholar 

  75. Masuda H, Maruyama T, Hiratsu E, Yamane J, Iwanami A, Nagashima T, Ono M, Miyoshi H, Okano HJ, Ito M, Tamaoki N, Nomura T, Okano H, Matsuzaki Y, Yoshimura Y. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/γ nullc immunodeficient mice. Proc Natl Acad Sci U S A. 2007;104:1925–30.

    Article  PubMed  CAS  Google Scholar 

  76. Cervello I, Mas A, Gil-Sanchis C, Peris L, Faus A, Saunders PT, Critchley HO, Simon C. Reconstruction of endometrium from human endometrial side population cell lines. PLoS One. 2011;6:e21221.

    Article  PubMed  CAS  Google Scholar 

  77. Brody JR, Cunha GR. Histologic, morphometric, and immunocytochemical analysis of myometrial development in rats and mice: I. Normal development. Am J Anat. 1989;186:1–20.

    Article  PubMed  CAS  Google Scholar 

  78. Chan RW, Gargett CE. Identification of label-retaining cells in mouse endometrium. Stem Cells. 2006;24:1529–38.

    Article  PubMed  CAS  Google Scholar 

  79. Chan RWS, Kaitu’u-Lino T, Gargett CE. Role of label-retaining cells in estrogen-induced endometrial regeneration. Reprod Sci. 2012;19:102–14.

    Article  PubMed  CAS  Google Scholar 

  80. Martin L, Finn CA. Interactions of oestradiol and progestins in the mouse uterus. J Endocrinol. 1970;48:109–15.

    Article  PubMed  CAS  Google Scholar 

  81. Martin L, Finn CA, Trinder G. Hypertrophy and hyperplasia in the mouse uterus after oestrogen treatment: an autoradiographic study. J Endocrinol. 1973;56:133–44.

    Article  PubMed  CAS  Google Scholar 

  82. Walter LM, Rogers PAW, Girling JE. The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice. Reproduction. 2005;129:765–77.

    Article  PubMed  CAS  Google Scholar 

  83. Brasted M, White CA, Kennedy TG, Salamonsen LA. Mimicking the events of menstruation in the murine uterus. Biol Reprod. 2003;69:1273–80.

    Article  PubMed  CAS  Google Scholar 

  84. Cervello I, Martinez-Conejero JA, Horcajadas JA, Pellicer A, Simon C. Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum Reprod. 2007;22:45–51.

    Article  PubMed  CAS  Google Scholar 

  85. Szotek PP, Chang HL, Zhang L, Preffer F, Dombkowski D, Donahoe PK, Teixeira J. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stimulation. Stem Cells. 2007;25:1317–25.

    Article  PubMed  CAS  Google Scholar 

  86. Gargett CE, Chan RW, Schwab KE. Endometrial stem cells. Curr Opin Obstet Gynecol. 2007;19:377–83.

    Article  PubMed  Google Scholar 

  87. Kaitu’u-Lino TJ, Ye L, Salamonsen LA, Girling JE, Gargett CE. Identification of label-retaining perivascular cells in a mouse model of endometrial decidualization, breakdown, and repair. Biol Reprod. 2012;86:184, 1–8. doi:10.1095/biolreprod.112.099309:.

    Google Scholar 

  88. Kaitu’u-Lino TJ, Ye L, Gargett CE. Reepithelialization of the uterine surface arises from endometrial glands: evidence from a functional mouse model of breakdown and repair. Endocrinology. 2010;151:3386–95.

    Article  PubMed  CAS  Google Scholar 

  89. Mayani H, Alvarado-Moreno JA, Flores-Guzman P. Biology of human hematopoietic stem and progenitor cells present in circulation. Arch Med Res. 2003;34:476–88.

    Article  PubMed  CAS  Google Scholar 

  90. He Q, Wan C, Li G. Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells. 2007;25:69–77.

    Article  PubMed  CAS  Google Scholar 

  91. Robb AO, Mills NL, Smith IB, Short A, Tura-Ceide O, Barclay GR, Blomberg A, Critchley HO, Newby DE, Denison FC. Influence of menstrual cycle on circulating endothelial progenitor cells. Hum Reprod. 2009;24:619–25.

    Article  PubMed  CAS  Google Scholar 

  92. Korbling M, Estrov Z. Adult stem cells for tissue repair - A new therapeutic concept? N Engl J Med. 2003;349:570–82.

    Article  PubMed  Google Scholar 

  93. Bratincsak A, Brownstein MJ, Cassiani-Ingoni R, Pastorino S, Szalayova I, Toth ZE, Key S, Nemeth K, Pickel J, Mezey E. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells. 2007;25:2820–6.

    Article  PubMed  CAS  Google Scholar 

  94. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292:81–5.

    Article  PubMed  CAS  Google Scholar 

  95. Mints M, Jansson M, Sadeghi B, Westgren M, Uzunel M, Hassan M, Palmblad J. Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient. Hum Reprod. 2008;23:139–43.

    Article  PubMed  CAS  Google Scholar 

  96. Ikoma T, Kyo S, Maida Y, Ozaki S, Takakura M, Nakao S, Inoue M. Bone marrow-derived cells from male donors can compose endometrial glands in female transplant recipients. Am J Obstet Gynecol. 2009;201:608-e1–8.

    Article  CAS  Google Scholar 

  97. Cervello I, Gil-Sanchis C, Mas A, Faus A, Sanz J, Moscardo F, Higueras G, Sanz MA, Pellicer A, Simon C. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient. PLoS One. 2012;7:e30260.

    Article  PubMed  CAS  Google Scholar 

  98. Aghajanova L, Horcajadas JA, Esteban FJ, Giudice LC. The bone marrow-derived human mesenchymal stem cell: potential progenitor of the endometrial stromal fibroblast. Biol Reprod. 2010;82:1076–87.

    Article  PubMed  CAS  Google Scholar 

  99. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25:2082–6.

    Article  PubMed  CAS  Google Scholar 

  100. Du H, Taylor HS. Stem cells in female reproduction. Reprod Sci. 2010;16:126–39.

    Google Scholar 

  101. Masuda H, Kalka C, Takahashi T, Yoshida M, Wada M, Kobori M, Itoh R, Iwaguro H, Eguchi M, Iwami Y, Tanaka R, Nakagawa Y, Sugimoto A, Ninomiya S, Hayashi S, Kato S, Asahara T. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res. 2007;101:598–606.

    Article  PubMed  CAS  Google Scholar 

  102. Zhang WB, Cheng MJ, Huang YT, Jiang W, Cong Q, Zheng YF, Xu CJ. A study in vitro on differentiation of bone marrow mesenchymal stem cells into endometrial epithelial cells in mice. Eur J Obstet Gynecol Reprod Biol. 2012;160:185–90.

    Article  PubMed  CAS  Google Scholar 

  103. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  104. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–80.

    Article  PubMed  CAS  Google Scholar 

  105. Trounson A. The production and directed differentiation of human embryonic stem cells. Endocr Rev. 2006;27:208–19.

    Article  PubMed  Google Scholar 

  106. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20.

    Article  PubMed  CAS  Google Scholar 

  107. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  108. Ye L, Mayberry R, Lo CY, Britt KL, Stanley EG, Elefanty AG, Gargett CE. Generation of human female reproductive tract epithelium from human embryonic stem cells. PLoS One. 2011;6:e21136.

    Article  PubMed  CAS  Google Scholar 

  109. Ye L, Evans J, Gargett CE. Lim1/LIM1 is expressed in developing and adult mouse and human endometrium. Histochem Cell Biol. 2012;137:527–36.

    Article  PubMed  CAS  Google Scholar 

  110. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364:1789–99.

    Article  PubMed  Google Scholar 

  111. Kao AP, Wang KH, Chang CC, Lee JN, Long CY, Chen HS, Tsai CF, Hsieh TH, Tsai EM. Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertil Steril. 2011;95:1308–15.

    Article  PubMed  CAS  Google Scholar 

  112. Chan RW, Ng EH, Yeung WS. Identification of cells with colony-forming activity, self-renewal capacity, and multipotency in ovarian endometriosis. Am J Pathol. 2011;178:2832–44.

    Article  PubMed  CAS  Google Scholar 

  113. Fazleabas AT, Brudney A, Gurates B, Chai D, Bulun S. A modified baboon model for endometriosis. Ann N Y Acad Sci. 2002;955:308–17.

    Article  PubMed  Google Scholar 

  114. Bokor A, Debrock S, Drijkoningen M, Goossens W, Fulop V, D’Hooghe T. Quantity and quality of retrograde menstruation: a case control study. Reprod Biol Endocrinol. 2009;7:123.

    Article  PubMed  CAS  Google Scholar 

  115. Gargett CE, Tan C, Masuda H, Anwar SS, Ciurej I, Rao J, Weston G. Identification of endometrial stem cells in menstrual blood and peritoneal fluid of women with endometriosis. 11th World Congress on Endometriosis. 2011; Sept 4–7:P3-334-(p 198).

  116. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nature Rev Cancer. 2003;3:895–902.

    Article  CAS  Google Scholar 

  117. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.

    Article  PubMed  CAS  Google Scholar 

  118. Jordan CT. Searching for leukemia stem cells - Not yet the end of the road? Cancer Cell. 2006;10:253–4.

    Article  PubMed  CAS  Google Scholar 

  119. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12:133–43.

    PubMed  CAS  Google Scholar 

  120. Di Cristofano A, Ellenson LH. Endometrial carcinoma. Ann Rev Pathol Mech Dis. 2007;2:57–85.

    Article  CAS  Google Scholar 

  121. Friel AM, Sergent PA, Patnaude C, Szotek PP, Oliva E, Scadden DT, Seiden MV, Foster R, Rueda BR. Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle. 2008;7:242–9.

    Article  PubMed  CAS  Google Scholar 

  122. Hubbard SA, Friel AM, Kumar B, Zhang L, Rueda BR, Gargett CE. Evidence for cancer stem cells in human endometrial carcinoma. Cancer Res. 2009;69:8241–8.

    Article  PubMed  CAS  Google Scholar 

  123. Kato K, Takao T, Kuboyama A, Tanaka Y, Ohgami T, Yamaguchi S, Adachi S, Yoneda T, Ueoka Y, Kato K, Hayashi S, Asanoma K, Wake N. Endometrial cancer side-population cells show prominent migration and have a potential to differentiate into the mesenchymal cell lineage. Am J Pathol. 2010;176:381–92.

    Article  PubMed  CAS  Google Scholar 

  124. Rutella S, Bonanno G, Procoli A, Mariotti A, Corallo M, Prisco MG, Eramo A, Napoletano C, Gallo D, Perillo A, Nuti M, Pierelli L, Testa U, Scambia G, Ferrandina G. Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res. 2009;15:4299–311.

    Article  PubMed  CAS  Google Scholar 

  125. Friel AM, Zhang L, Curley MD, Therrien VA, Sergent PA, Belden SE, Borger DR, Mohapatra G, Zukerberg LR, Foster R, Rueda BR. Epigenetic regulation of CD133 and tumorigenicity of CD133 positive and negative endometrial cancer cells. Reprod Biol Endocrinol. 2010;8:147.

    Article  PubMed  CAS  Google Scholar 

  126. Mather JP. Cancer stem cells: in vitro models. Stem Cells. 2012;30:95–9.

    Article  PubMed  CAS  Google Scholar 

  127. Hubbard SA, Gargett CE. A cancer stem cell origin for human endometrial cancer? Reproduction. 2010;140:23–32.

    Article  PubMed  CAS  Google Scholar 

  128. Gargett CE, Healy DL. Generating receptive endometrium in Asherman’s syndrome. J Hum Reprod Sci. 2011;4:49–52.

    PubMed  Google Scholar 

  129. Yu D, Wong Y-M, Cheong Y, Xia E, Li T-C. Asherman’s syndrome - one century later. Fert Steril. 2008;89:759–79.

    Article  Google Scholar 

  130. Panayiotides I, Weyers S, Bosteels J, Van Herendael B. Intrauterine adhesions (IUA): has there been progress in understanding and treatment over the last 20 years? Gynecol Surg. 2009;6:197–211.

    Article  Google Scholar 

  131. Lo ST, Ramsay P, Pierson R, Manconi F, Munro MG, Fraser IS. Endometrial thickness measured by ultrasound scan in women with uterine outlet obstruction due to intrauterine or upper cervical adhesions. Hum Reprod. 2008;23:306–9.

    Article  PubMed  Google Scholar 

  132. Schenker JG, Margalioth EJ. Intrauterine adhesions: an updated appraisal. Fertil Steril. 1982;37:593–610.

    PubMed  CAS  Google Scholar 

  133. Nagori CB, Panchal SY, Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman’s syndrome. J Hum Reprod Sci. 2011;4:43–8.

    Article  PubMed  Google Scholar 

  134. Alawadhi FA, Taylor HS. Treatment with Bone Marrow Derived Stem Cells (BMDSCs) improves fertility in a murine model of asherman’s syndrome. Reprod Sci. 2012;19:O-136.

    Google Scholar 

  135. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–7.

    Article  PubMed  CAS  Google Scholar 

  136. Prockop DJ. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther. 2009;17:939–46.

    Article  PubMed  CAS  Google Scholar 

  137. Massasa EE, Taylor HS. Use of endometrial stem cells in regenerative medicine. Regen Med. 2012;7:133–5.

    Article  PubMed  Google Scholar 

  138. Zhong Z, Patel AN, Ichim TE, Riordan NH, Wang H, Min WP, Woods EJ, Reid M, Mansilla E, Marin GH, Drago H, Murphy MP, Minev B. Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med. 2009;7:15.

    Article  PubMed  Google Scholar 

  139. Medistem. Medistem and ERCell Initiate Phase II RECOVER-ERC Heart Failure Trial. http://medisteminccom/2012/medistem-and-ercell-initiate-phase-ii-recover-erc-heart-failure-trial/. 2012.

  140. Atala A. Engineering organs. Curr Opin Biotechnol. 2009;20:575–92.

    Article  PubMed  CAS  Google Scholar 

  141. Schmidt D, Mol A, Neuenschwander S, Breymann C, Gossi M, Zund G, Turina M, Hoerstrup SP. Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg. 2005;27:795–800.

    Article  PubMed  Google Scholar 

  142. Gargett CE. Identification and characterisation of human endometrial stem/progenitor cells. Aust N Z J Obstet Gynaecol. 2006;46:250–3.

    Article  PubMed  Google Scholar 

  143. Smith FJ, Holman CD, Moorin RE, Tsokos N. Lifetime risk of undergoing surgery for pelvic organ prolapse. Obstet Gynecol. 2010;116:1096–100.

    Article  PubMed  Google Scholar 

  144. FDA Public Health Notification. Urogynecologic surgical mesh: update on the safety and effectiveness of transvaginal placement for pelvic organ prolapse. http://wwwfdagov/downloads/MedicalDevices/Safety/AlertsandNotices/UCM262760.pdf. 2011.

Download references

Acknowledgments

The authors acknowledge grant support from the Australian National Health and Medical Research Council grants (545992, 1021126, 1021127) and R.D Wright Career Development Award 465121 (C.E.Gargett), Monash IVF Foundation and CASS Foundation (CE Gargett), the Victorian Government’s Operational Infrastructure Support Program, as well as Australian Postgraduate Awards (H. Nguyen, L. Ye) and Postgraduate Publications Award (HPT Nguyen)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline E. Gargett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gargett, C.E., Nguyen, H.P.T. & Ye, L. Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord 13, 235–251 (2012). https://doi.org/10.1007/s11154-012-9221-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-012-9221-9

Keywords

Navigation