Skip to main content
Log in

Synthesis and characterization of Zn3V2O8 nanoparticles: mechanism and factors influencing crystal violet photodegradation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present work, the removal efficiency of dye pigments was improved by a simple new approach, using Zn3V2O8 nanoparticles formulated from mixed oxides of zinc and vanadium via the precipitation technique followed by a calcination step. The physicochemical characteristics of the nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller Method, X-ray photoelectron spectroscopy, Fourier transform infrared spectrum and UV–Vis diffuse reflectance spectroscopy. The photocatalytic performances of zinc vanadate were evaluated for the degradation of the cationic dye crystal violet under UV irradiation, considering different conditions such as; the photocatalyst dose, the initial pH of the solution and the dye concentration involved in the process. According to this study and the findings, the improved photocatalytic properties and excellent stability, which can be maintained at about 90% after five cycles, can be attributed to the strong interaction between the charge carriers on the surface of our Zn3V2O8 catalyst and the CV molecule, which significantly enhances the redox capacity. This work provides suggestions and insights towards a new eco-friendly strategy for the preparation of Zn3V2O8 photocatalyst and its application in the environmental field especially for the degradation of pollutants in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ben MH, Boughzala O, Dridi D et al (2011) Les colorants textiles sources de contamination de l’eau: CRIBLAGE de la toxicité et des méthodes de traitement Textiles dyes as a source of wastewater contamination: screening of the toxicity and treatment methods. Rev Sci Eau. https://doi.org/10.7202/1006453ar

    Article  Google Scholar 

  2. Ben MH, Boughzala U, Dridi D et al (2011) Textiles dyes as a source of wastewater contamination: screening of the toxicity and treatment methods. Rev des Sci l’Eau 24:209–238. https://doi.org/10.7202/1006453AR

    Article  Google Scholar 

  3. Aulakh MS, Khurana MPS, Singh D (2010) Water pollution related to agricultural, industrial, and urban activities, and its effects on the food chain: case studies from Punjab. Water Agric Sustain Strateg. https://doi.org/10.1080/15228860902929620

    Article  Google Scholar 

  4. Mertah O, Gómez-Avilés A, Kherbeche A et al (2022) Peroxymonosulfate enhanced photodegradation of sulfamethoxazole with TiO2@CuCo2O4 catalysts under simulated solar light. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.108438

    Article  Google Scholar 

  5. Zhao C, Zhou J, Yan Y et al (2021) Application of coagulation/flocculation in oily wastewater treatment: a review. Sci Total Environ 765:142795. https://doi.org/10.1016/j.scitotenv.2020.142795

    Article  CAS  PubMed  Google Scholar 

  6. Bhatti ZA, Mahmood Q, Raja IA et al (2011) Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution. Phys Chem Earth 36:465–469. https://doi.org/10.1016/j.pce.2010.03.022

    Article  Google Scholar 

  7. Prajapati AK, Mehra S, Dewangan T et al (2021) Treatment of rice grain based distillery biodigester effluent using iron metal and salt: chemical oxidation and electro-oxidation combined study in batch mode. Environ Nanotechnol Monit Manag 16:100585. https://doi.org/10.1016/j.enmm.2021.100585

    Article  CAS  Google Scholar 

  8. Feki E, Karray F, Mhiri N et al (2022) Performance of UASB reactor treating waste activated sludge: effect of electro-chemical disintegration on the anaerobic microbial population structure and abundance. J Water Process Eng 49:103020. https://doi.org/10.1016/j.jwpe.2022.103020

    Article  Google Scholar 

  9. Zhang X, Jiang J, Yuan F et al (2022) Estimation of water footprint in seawater desalination with reverse osmosis process. Environ Res. https://doi.org/10.1016/j.envres.2021.112374

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li S, Wang X, Guo Y et al (2022) Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: a review. J Clean Prod 333:130171. https://doi.org/10.1016/j.jclepro.2021.130171

    Article  CAS  Google Scholar 

  11. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

    Article  CAS  PubMed  Google Scholar 

  12. Filip Edelmannová M, Reli M, Nadrah P et al (2022) A comparative study of TiO2 preparation method on their photocatalytic activity for CO2 reduction. Catal Today. https://doi.org/10.1016/j.cattod.2022.11.005

    Article  Google Scholar 

  13. Surovčík J, Medvecká V, Greguš J et al (2022) Characterization of TiO2 nanofibers with enhanced photocatalytic properties prepared by plasma assisted calcination. Ceram Int 48:37322–37332. https://doi.org/10.1016/j.ceramint.2022.08.309

    Article  CAS  Google Scholar 

  14. Mertah O, Gómez-Avilés A, Slassi A et al (2023) Photocatalytic degradation of sulfamethoxazole with Co-CuS@TiO2 heterostructures under solar light irradiation. Catal Commun 175:106611

    Article  CAS  Google Scholar 

  15. Sharifi Rad A, Afshar A, Azadeh M (2023) Antireflection and photocatalytic single layer and double layer ZnO and ZnO–TiO2 thin films. Opt Mater (Amst) 136:113501. https://doi.org/10.1016/j.optmat.2023.113501

    Article  CAS  Google Scholar 

  16. Yadav AA, Kang SW, Hunge YM (2021) Photocatalytic degradation of Rhodamine B using graphitic carbon nitride photocatalyst. J Mater Sci Mater Electron 32:15577–15585. https://doi.org/10.1007/s10854-021-06106-y

    Article  CAS  Google Scholar 

  17. Yang X, Yang Y, Wang B et al (2019) Synthesis and photocatalytic property of cubic phase CdS. Solid State Sci 92:31–35. https://doi.org/10.1016/j.solidstatesciences.2019.04.004

    Article  CAS  Google Scholar 

  18. Zhu C, Li Y, Yang Y et al (2020) Influence of operational parameters on photocatalytic decolorization of a cationic azo dye under visible-light in aqueous Ag3PO4. Inorg Chem Commun 115:107850. https://doi.org/10.1016/j.inoche.2020.107850

    Article  CAS  Google Scholar 

  19. Subramani T, Thimmarayan G, Balraj B et al (2022) Surfactants assisted synthesis of WO3 nanoparticles with improved photocatalytic and antibacterial activity: a strong impact of morphology. Inorg Chem Commun 142:109709. https://doi.org/10.1016/j.inoche.2022.109709

    Article  CAS  Google Scholar 

  20. Wu W, Luo ZD, Wang J, Liu J (2017) Photocatalytic degradation of methyl violet and Rhodamine B based on an extremely stable metal-organic framework decorated with carboxylate groups. Inorg Chem Commun 85:2–4. https://doi.org/10.1016/j.inoche.2017.03.025

    Article  CAS  Google Scholar 

  21. Kondo Y, Kuwahara Y, Mori K, Yamashita H (2022) Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production. Chem 8:2924–2938. https://doi.org/10.1016/j.chempr.2022.10.007

    Article  CAS  Google Scholar 

  22. Zhao H, Zalfani M, Li CF et al (2019) Cascade electronic band structured zinc oxide/bismuth vanadate/three-dimensional ordered macroporous titanium dioxide ternary nanocomposites for enhanced visible light photocatalysis. J Colloid Interface Sci 539:585–597. https://doi.org/10.1016/j.jcis.2018.12.076

    Article  CAS  PubMed  Google Scholar 

  23. Sambandam B, Soundharrajan V, Song J et al (2017) Zn3V2O8 porous morphology derived through a facile and green approach as an excellent anode for high-energy lithium ion batteries. Chem Eng J 328:454–463. https://doi.org/10.1016/J.CEJ.2017.07.050

    Article  CAS  Google Scholar 

  24. Díaz-Anichtchenko D, Santamaria-Perez D, Marqueño T et al (2020) Comparative study of the high-pressure behavior of ZnV2O6, Zn2V2O7, and Zn3V2O8. J Alloys Compd. https://doi.org/10.1016/J.JALLCOM.2020.155505

    Article  Google Scholar 

  25. Kim KM, Cho HH, Yu HK, Kim MH (2023) Single phase ZnV2O6 nanorods with excellent visible light photodetection capability. J Alloys Compd 938:168676. https://doi.org/10.1016/j.jallcom.2022.168676

    Article  CAS  Google Scholar 

  26. Kohansal S, Haghighi M, Zarrabi M (2021) Intensification of Bi7O9I3 nanoparticles distribution on ZnO via ultrasound induction approach used in photocatalytic water treatment under solar light irradiation. Chem Eng Sci 230:116086. https://doi.org/10.1016/j.ces.2020.116086

    Article  CAS  Google Scholar 

  27. Duan F, Dong W, Shi D, Chen M (2011) Template-free synthesis of ZnV2O4 hollow spheres and their application for organic dye removal. Appl Surf Sci 258:189–195. https://doi.org/10.1016/j.apsusc.2011.08.029

    Article  CAS  Google Scholar 

  28. Rajkumar S, Elanthamilan E, Merlin JP (2021) Facile synthesis of Zn3V2O8 nanostructured material and its enhanced supercapacitive performance. J Alloys Compd. https://doi.org/10.1016/J.JALLCOM.2020.157939

    Article  Google Scholar 

  29. Wang D, Tang J, Zou Z, Ye J (2005) Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chem Mater 17:5177–5182. https://doi.org/10.1021/CM051016X

    Article  CAS  Google Scholar 

  30. Bie C, Pei J, Wang J et al (2017) Graphite nanoplates firmly anchored with well-dispersed porous Zn3V2O8 nanospheres: rational fabrication and enhanced lithium storage capability. Electrochim Acta 248:140–149. https://doi.org/10.1016/j.electacta.2017.07.112

    Article  CAS  Google Scholar 

  31. Luitel HN, Chand R, Torikai T et al (2013) Rare earth free Zn3V2O8 phosphor with controlled microstructure and its photocatalytic activity. Int J Photoenergy. https://doi.org/10.1155/2013/410613

    Article  Google Scholar 

  32. Ke X, Zhang J, Dai K, Lv J, Liang C (2019) Novel visible light driven direct Z scheme Zn3V2O8 Ag3PO4 heterojunctions for enhanced photocatalytic performance. J Alloys Compound 799:113–123

    Article  CAS  Google Scholar 

  33. Mazloom F, Masjedi-Arani M, Ghiyasiyan-Arani M, Salavati-Niasari M (2016) Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route. J Mol Liq 214:46–53. https://doi.org/10.1016/J.MOLLIQ.2015.11.033

    Article  CAS  Google Scholar 

  34. Mazloom F, Masjedi-Arani M, Salavati-Niasari M (2017) Rapid and solvent-free solid-state synthesis and characterization of Zn3V2O8 nanostructures and their phenol red aqueous solution photodegradation. Solid State Sci 70:101–109. https://doi.org/10.1016/j.solidstatesciences.2017.06.013

    Article  CAS  Google Scholar 

  35. Biyada S, Merzouki M, Elkarrach K, Benlemlih M (2020) Spectroscopic characterization of organic matter transformation during composting of textile solid waste using UV–Visible spectroscopy, Infrared spectroscopy and X-ray diffraction (XRD). Microchem J 159:105314. https://doi.org/10.1016/j.microc.2020.105314

    Article  CAS  Google Scholar 

  36. Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2012:154–160

    Article  Google Scholar 

  37. Kharin AY (2020) Deep learning for scanning electron microscopy: Synthetic data for the nanoparticles detection. Ultramicroscopy 219:113125. https://doi.org/10.1016/j.ultramic.2020.113125

    Article  CAS  PubMed  Google Scholar 

  38. Su D (2017) Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ 2:70–83. https://doi.org/10.1016/j.gee.2017.02.001

    Article  Google Scholar 

  39. Van HM, Verbruggen SW, Yang X et al (2020) Image analysis and in situ FTIR as complementary detection tools for photocatalytic soot oxidation. Chem Eng J 367:269–277. https://doi.org/10.1016/j.cej.2019.02.154

    Article  CAS  Google Scholar 

  40. Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627–637

    Article  Google Scholar 

  41. Morozzi P, Ballarin B, Arcozzi S et al (2021) Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), a rapid and non-destructive analytical tool for the identification of Saharan dust events in particulate matter filters. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2021.118297

    Article  Google Scholar 

  42. Gouveia D, Yilmaz B, Cevik P, Johnston WM (2022) Using Kubelka-Munk reflectance theory to predict optimal pink composite thickness and shade with an opaqued PEEK background for a final gingival color: an in vitro study. Dent Mater 38:1452–1458. https://doi.org/10.1016/j.dental.2022.06.027

    Article  CAS  PubMed  Google Scholar 

  43. Bai J, Li X, Liu G et al (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv Funct Mater 24:3012–3020. https://doi.org/10.1002/adfm.201303442

    Article  CAS  Google Scholar 

  44. Shahid M, Liu J, Ali Z et al (2013) Structural and electrochemical properties of single crystalline MoV 2O8 nanowires for energy storage devices. J Power Sources 230:277–281. https://doi.org/10.1016/j.jpowsour.2012.12.033

    Article  CAS  Google Scholar 

  45. Javanbakht V, Mohammadian M (2021) Photo-assisted advanced oxidation processes for efficient removal of anionic and cationic dyes using Bentonite/TiO2 nano-photocatalyst immobilized with silver nanoparticles. J Mol Struct 1239:130496. https://doi.org/10.1016/j.molstruc.2021.130496

    Article  CAS  Google Scholar 

  46. Wang X, Zhang Q, Wan Q et al (2011) Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity. J Phys Chem C 115:2769–2775. https://doi.org/10.1021/jp1096822

    Article  CAS  Google Scholar 

  47. Palliyalil S, Chola RKV, Vigneshwaran S, Poovathumkuzhi NC, Chelaveettil BM, Meenakshi S (2022) Ternary system of TiO2 confined chitosan polyaniline heterostructure photocatalyst for the degradation of anionic and cationic dyes. Environ Technol Innov 28:102586

    Article  CAS  Google Scholar 

  48. Huang H, Chen H, Xia Y et al (2012) Controllable synthesis and visible-light-responsive photocatalytic activity of Bi 2WO6 fluffy microsphere with hierarchical architecture. J Colloid Interface Sci 370:132–138. https://doi.org/10.1016/j.jcis.2011.12.056

    Article  CAS  PubMed  Google Scholar 

  49. Nezamzadeh-Ejhieh A, Banan Z (2011) A comparison between the efficiency of CdS nanoparticles/zeolite A and CdO/zeolite A as catalysts in photodecolorization of crystal violet. Desalination 279:146–151. https://doi.org/10.1016/j.desal.2011.06.006

    Article  CAS  Google Scholar 

  50. Kottam JP (2021) Investigation of photocatalytic degradation of crystal violet and its correlation with bandgap in ZnO and ZnO/GO nanohybrid. Inorg Chem Commun 125:108460. https://doi.org/10.1016/j.inoche.2021.108460

    Article  CAS  Google Scholar 

  51. Farag M, El-Dafrawy SM, Hassan SM (2023) ZnO and C/ZnO catalysts synthesized via plant mediated extracts for photodegradation of crystal violet and methyl orange dyes. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02811-9

    Article  Google Scholar 

  52. Makhloufi R, Hachani SE, Fettah A et al (2022) Synthesis of Sb2S3-Sb4O5Cl2 composite used as a photocatalyst for crystal violet cationic dye degradation. Chem Data Collect 39:100867. https://doi.org/10.1016/j.cdc.2022.100867

    Article  CAS  Google Scholar 

  53. Zhang D, Zeng F (2012) Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J Mater Sci 47:2155–2161. https://doi.org/10.1007/s10853-011-6016-4

    Article  CAS  Google Scholar 

  54. Moussaid D, Khallouk K, El Khalfaouy R et al (2022) Solution combustion synthesis of β-Cu2V2O7 nanoparticles: photocatalytic degradation of crystal violet under UV and visible light illumination. React Kinet Mech Catal 135:2797–2812. https://doi.org/10.1007/s11144-022-02273-z

    Article  CAS  Google Scholar 

  55. Ahmad W, Khan A, Ali N et al (2021) Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. Environ Sci Pollut Res 28:8074–8087. https://doi.org/10.1007/S11356-020-10898-7

    Article  CAS  Google Scholar 

  56. Motahari F, Mozdianfard MR, Soofivand F, Salavati-Niasari M (2014) NiO nanostructures: Synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv 4:27654–27660. https://doi.org/10.1039/c4ra02697g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Khallouk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagnaouti Moumnani, F., Khallouk, K., Elkhalfaouy, R. et al. Synthesis and characterization of Zn3V2O8 nanoparticles: mechanism and factors influencing crystal violet photodegradation. Reac Kinet Mech Cat 137, 1157–1174 (2024). https://doi.org/10.1007/s11144-023-02553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02553-2

Keywords

Navigation