Skip to main content
Log in

Adsorption behavior of methylene blue using purified moroccan clay/alginate beads: response surface methodology optimization

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present study aims to investigate the adsorption behavior of methylene blue (MB) using purified Moroccan clay/alginate beads and optimize the process conditions using Response Surface Methodology (RSM). Composite alginate beads were synthesized via the drop method, and their performance as adsorbents for MB removal was assessed under varying pH levels, adsorbent dosage, and initial MB concentration using the Box-Behnken design. The results revealed that the optimal conditions for achieving 100% MB removal were pH 11.8, adsorbent mass of 4.9 g, and MB concentration of 191 ppm. The adsorption process was well described by the pseudo-second-order kinetic model and Langmuir isotherm model, suggesting that the process involves monolayer adsorption. Moreover, the regenerated adsorbent exhibited satisfactory adsorption performance after five cycles. These findings demonstrate the potential of purified Moroccan clay/alginate beads as an efficient, reusable adsorbent for MB removal from water solutions, contributing to the development of sustainable solutions for dye removal in wastewater treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gul S, Gul H, Gul M et al (2022) Enhanced adsorption of rhodamine B on biomass of cypress/false cypress (Chamaecyparis lawsoniana) fruit: optimization and kinetic study. Water (Switzerland). https://doi.org/10.3390/w14192987

    Article  Google Scholar 

  2. Sehar S, Rasool T, Syed HM et al (2022) Recent advances in biodecolorization and biodegradation of environmental threatening textile finishing dyes. 3 Biotech. https://doi.org/10.1007/s13205-022-03247-7

    Article  PubMed  Google Scholar 

  3. Belghiti M, Tanji K, El Mersly L et al (2022) Fast and non-selective photodegradation of basic yellow 28, malachite green, tetracycline, and sulfamethazine using a nanosized ZnO synthesized from zinc ore. React Kinet Mech Catal 135:2265–2278. https://doi.org/10.1007/s11144-022-02232-8

    Article  CAS  Google Scholar 

  4. Dave S, Das J, Varshney B, Sharma VP (2022) Dyes and pigments: interventions and how safe and sustainable are colors of life!!! In: environmental science and engineering. Springer International Publishing, Cham, pp 1–20

    Google Scholar 

  5. Mehta M, Sharma M, Pathania K et al (2021) Degradation of synthetic dyes using nanoparticles: a mini-review. Environ Sci Pollut Res 28:49434–49446. https://doi.org/10.1007/s11356-021-15470-5

    Article  CAS  Google Scholar 

  6. Garg S, Roy A (2022) Phytoremediation: an alternative approach for removal of dyes. In: phytoremediation: biotechnological strategies for promoting invigorating environs. Elsevier, Amsterdam, pp 369–386

    Google Scholar 

  7. Rajoria B, Roy A (2022) Bacterial and fungal degradation of dyes: a remedial source. In: development in wastewater treatment research and processes: microbial degradation of xenobiotics through bacterial and fungal approach. Elsevier, Amsterdam, pp 23–43

    Google Scholar 

  8. Shamsheer B, Mughal TA, Yousaf Z et al (2021) Green synthesis of dyes and appliance on silk by using metamordating technique. Pak J Sci Ind Res Ser B Biol Sci 64:116–125. https://doi.org/10.52763/pjsir.biol.sci.64.2.2021.116.125

    Article  CAS  Google Scholar 

  9. Kumar L, Bharadvaja N (2020) Microorganisms: a remedial source for dye pollution. In: removal of toxic pollutants through microbiological and tertiary treatment: new perspectives. Elsevier, Amsterdam, pp 309–333

    Book  Google Scholar 

  10. Corso CR, Almeida EJR, Santos GC et al (2012) Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae. Water Sci Technol 65:1490–1495. https://doi.org/10.2166/wst.2012.037

    Article  CAS  PubMed  Google Scholar 

  11. Bilal M, Ali J, Bibi K et al (2022) Remediation of different dyes from textile effluent using activated carbon synthesized from Buxus Wallichiana. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2022.115267

    Article  Google Scholar 

  12. Singh I, Gupta S, Gautam HK et al (2021) Antimicrobial, radical scavenging, and dye degradation potential of nontoxic biogenic silver nanoparticles using Cassia fistula pods. Chem Pap 75:979–991. https://doi.org/10.1007/s11696-020-01355-3

    Article  CAS  Google Scholar 

  13. Usefzay O, Yari S, Amiri P, Hasanein P (2022) Evaluation of protective effects of methylene blue on cisplatin-induced nephrotoxicity. Biomed Pharmacother 150:113023. https://doi.org/10.1016/j.biopha.2022.113023

    Article  CAS  PubMed  Google Scholar 

  14. Vel C, Hern A (2023) Photocatalytic reduction of methylene blue induced by a commercial titanium precursor in homogeneous phase. J Photochem Photobiol A: Chem. https://doi.org/10.1016/j.jphotochem.2023.114552

    Article  Google Scholar 

  15. Klyuev SV, Klyuev AV, Vatin NI (2021) Innovations and technologies in construction, BUILDINTECH BIT 2021. Springer International Publishing, Cham

    Google Scholar 

  16. Xiao X, Zhang F, Feng Z et al (2015) Adsorptive removal and kinetics of methylene blue from aqueous solution using NiO/MCM-41 composite. Phys E Low-Dimens Syst Nanostruct 65:4–12. https://doi.org/10.1016/j.physe.2014.08.006

    Article  CAS  Google Scholar 

  17. Song SG, Kim SH (2011) Pruritus ani. J Korean Soc Coloproctol 27:54–57. https://doi.org/10.3393/jksc.2011.27.2.54

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ge ITK, Nugraha MW, Ahmad Kamal N, Sambudi NS (2019) Composite of kaolin/sodium alginate (SA) beads for methylene blue adsorption. ASEAN J Chem Eng 19:100–109. https://doi.org/10.22146/ajche.51457

    Article  Google Scholar 

  19. Waghchaure RH, Adole VA, Jagdale BS (2022) Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: a concise review. Inorg Chem Commun 143:109764. https://doi.org/10.1016/j.inoche.2022.109764

    Article  CAS  Google Scholar 

  20. Thiam A, Tanji K, Assila O et al (2020) Valorization of date pits as an effective biosorbent for remazol brilliant blue adsorption from aqueous solution. J Chem 2020:14. https://doi.org/10.1155/2020/4173152

    Article  CAS  Google Scholar 

  21. Rohmah AA, Purnomo AS, Safitri WN (2022) Biodecolorization of methylene blue by using bacillus subtilis immobilized into SA-PVA-bentonite matrix in mineral salt medium and non-nutritious medium. Indones J Chem 22:1637–1650. https://doi.org/10.22146/ijc.76080

    Article  CAS  Google Scholar 

  22. Fahoul Y, Zouheir M, Tanji K, Kherbeche A (2022) Synthesis of a novel ZnAl2O4/CuS nanocomposite and its characterization for photocatalytic degradation of acid red 1 under UV illumination. J Alloys Compd 889:161708. https://doi.org/10.1016/j.jallcom.2021.161708

    Article  CAS  Google Scholar 

  23. Bellouk H, El Mrabet I, Tanji K et al (2022) Performance of coagulation-flocculation followed by ultra-violet/ultrasound activated persulfate/hydrogen peroxide for landfill leachate treatment. Sci African 17:e01312. https://doi.org/10.1016/j.sciaf.2022.e01312

    Article  CAS  Google Scholar 

  24. Tanji K, El Mrabet I, Fahoul Y et al (2023) Experimental and theoretical investigation of enhancing the photocatalytic activity of Mg doped ZnO for nitrophenol degradation. React Kinet Mech Catal. https://doi.org/10.1007/s11144-023-02385-0

    Article  Google Scholar 

  25. Chkirida S, Zari N, Achour R et al (2021) Highly synergic adsorption/photocatalytic efficiency of alginate/bentonite impregnated TiO2 beads for wastewater treatment. J Photochem Photobiol A Chem 412:113215. https://doi.org/10.1016/j.jphotochem.2021.113215

    Article  CAS  Google Scholar 

  26. Madhava Rao M, Ramesh A, Purna Chandra Rao G, Seshaiah K (2006) Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J Hazard Mater 129:123–129. https://doi.org/10.1016/j.jhazmat.2005.08.018

    Article  CAS  PubMed  Google Scholar 

  27. Benhouria A, Islam MA, Zaghouane-Boudiaf H et al (2015) Calcium alginate-bentonite-activated carbon composite beads as highly effective adsorbent for methylene blue. Chem Eng J 270:621–630. https://doi.org/10.1016/j.cej.2015.02.030

    Article  CAS  Google Scholar 

  28. Anfar Z, Zbair M, Ahsaine HA et al (2018) Well-designed WO3/Activated carbon composite for Rhodamin. Removal: synthesis, characterization, and modeling using response surface methodology. Fuller Nanotub Carbon Nanostruct 26:389–397. https://doi.org/10.1080/1536383X.2018.1440386

    Article  CAS  Google Scholar 

  29. Foroutan R, Peighambardoust SJ, Peighambardoust SH et al (2021) Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/fe3 o4 magnetic nanocomposite from aqueous solutions: a kinetic, equilibrium and thermodynamic study. Molecules 26:1–19. https://doi.org/10.3390/molecules26082241

    Article  CAS  Google Scholar 

  30. Shak A, Dawood S, Sen TK (2017) Performance and dynamic modelling of mixed biomass-kaolin packed bed adsorption column for the removal of aqueous phase methylene blue (MB) dye. Desalin Water Treat 82:67–80. https://doi.org/10.5004/dwt.2017.20963

    Article  CAS  Google Scholar 

  31. Gao LH, Goldfarb JL (2021) Characterization and adsorption applications of composite biochars of clay minerals and biomass. Environ Sci Pollut Res 28:44277–44287. https://doi.org/10.1007/s11356-021-13858-x

    Article  CAS  Google Scholar 

  32. Keskin Avci S, Erucar I (2018) Porous Materials. Compr Energy Syst 2–5:182–203. https://doi.org/10.1016/B978-0-12-809597-3.00218-2

    Article  Google Scholar 

  33. Birniwa AH, Abubakar AS, Mahmud HNME et al (2022) Application of agricultural wastes for cationic dyes removal from wastewater BT - textile wastewater treatment: sustainable bio-nano materials and macromolecules, volume 1. In: Khadir A (ed) Muthu SS. Springer Nature Singapore, Singapore, pp 239–274

    Google Scholar 

  34. Dotto GL, Pinto LAA (2011) Adsorption of food dyes onto chitosan: optimization process and kinetic. Carbohydr Polym 84:231–238. https://doi.org/10.1016/j.carbpol.2010.11.028

    Article  CAS  Google Scholar 

  35. Jeon YS, Lei J, Kim J-H (2008) Dye adsorption characteristics of alginate/polyaspartate hydrogels. J Ind Eng Chem 14:726–731. https://doi.org/10.1016/j.jiec.2008.07.007

    Article  CAS  Google Scholar 

  36. de Souza FM, dos Santos OAA (2020) Adsorption of Diuron from aqueous solution onto commercial organophilic clay: kinetic, equilibrium and thermodynamic study. Environ Technol 41:603–616. https://doi.org/10.1080/09593330.2018.1505967

    Article  CAS  PubMed  Google Scholar 

  37. Adeyemo AA, Adeoye IO, Bello OS (2017) Adsorption of dyes using different types of clay: a review. Appl Water Sci 7:543–568. https://doi.org/10.1007/s13201-015-0322-y

    Article  CAS  Google Scholar 

  38. Velic N, Stjepanovic M, Begovic L et al (2018) Valorisation of waste wood biomass as biosorbent for the removal of synthetic dye methylene blue from aqueous solutions. SEEFOR-SOUTH-EAST Eur For 9:115–122. https://doi.org/10.15177/seefor.18-13

    Article  Google Scholar 

  39. Liu Y, Zheng Y, Wang A (2010) Response surface methodology for optimizing adsorption process parameters for methylene blue removal by a hydrogel composite. Adsorpt Sci Technol 28:913–922. https://doi.org/10.1260/0263-6174.28.10.913

    Article  Google Scholar 

  40. Bezerra MA, Santelli RE, Oliveira EP et al (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  41. Aydar AY (2018) Utilization of response surface methodology in optimization of extraction of plant materials. IntechOpen, Rijeka

    Book  Google Scholar 

  42. Aljar MAA, Rashdan S, El-Fattah AA (2021) Environmentally friendly polyvinyl alcohol−alginate/ bentonite semi-interpenetrating polymer network nanocomposite hydrogel beads as an efficient adsorbent for the removal of methylene blue from aqueous solution. Polymers (Basel). https://doi.org/10.3390/polym13224000

    Article  PubMed  Google Scholar 

  43. El Khanchaoui A, Sajieddine M, Mansori M et al (2023) Removal of single dye and dye mixture from aqueous solution with alginate-coated calcined layered double hydroxide and illite clay composite beads. Mater Res Innov. https://doi.org/10.1080/14328917.2022.2163112

    Article  Google Scholar 

  44. Li H, Zhang SP, Liang YQ et al (2018) Trimeric surfactant modified montmorillonite immobilized in alginate beads: an efficient adsorbent for removal of Cu 2+ and methyl orange from aqueous solution. Russ J Phys Chem A 92:2802–2810. https://doi.org/10.1134/S0036024418130186

    Article  CAS  Google Scholar 

  45. Wang W, Fan M, Ni J et al (2022) Efficient dye removal using fixed-bed process based on porous montmorillonite nanosheet/poly(acrylamide-co-acrylic acid)/sodium alginate hydrogel beads. Appl Clay Sci. https://doi.org/10.1016/j.clay.2022.106443

    Article  Google Scholar 

  46. Brindley GW (1981) Phyllosilicates. Mineralogy - encyclopedia of earth sciences series. Springer, Boston, pp 369–376

    Google Scholar 

  47. Pawar RR, Lalhmunsiama GP et al (2018) Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. Int J Biol Macromol 114:1315–1324. https://doi.org/10.1016/j.ijbiomac.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  48. Mohapi M, Sefadi JS, Mochane MJ et al (2020) Effect of LDHs and other clays on polymer composite in adsorptive removal of contaminants: a review. Crystals 10:1–39. https://doi.org/10.3390/cryst10110957

    Article  CAS  Google Scholar 

  49. Ewis D, Ba-Abbad MM, Benamor A, El-Naas MH (2022) Adsorption of organic water pollutants by clays and clay minerals composites: a comprehensive review. Appl Clay Sci 229:106686. https://doi.org/10.1016/j.clay.2022.106686

    Article  CAS  Google Scholar 

  50. Şahin Ö, Kaya M, Saka C (2015) Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue. Appl Clay Sci 116–117:46–53. https://doi.org/10.1016/J.CLAY.2015.08.015

    Article  Google Scholar 

  51. Komadel P (2016) Acid activated clays: materials in continuous demand. Appl Clay Sci 131:84–99. https://doi.org/10.1016/j.clay.2016.05.001

    Article  CAS  Google Scholar 

  52. Liu D, Yang X, Zhang L et al (2022) Immobilization of biomass materials for removal of refractory organic pollutants from wastewater. Int J Environ Res Public Health 19:13830. https://doi.org/10.3390/ijerph192113830

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schmidt LN, Horst MF, Lencina MMS et al (2022) Gels based on calcium alginate/pillared bentonite: structural characterization and their use as cadmium removal agent. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 57:218–228. https://doi.org/10.1080/10934529.2022.2050124

    Article  CAS  Google Scholar 

  54. Samaddar P, Kumar S, Kim KH (2019) Polymer hydrogels and their applications toward sorptive removal of potential aqueous pollutants. Polym Rev 59:418–464. https://doi.org/10.1080/15583724.2018.1548477

    Article  CAS  Google Scholar 

  55. Cavallaro G, Gianguzza A, Lazzara G et al (2013) Alginate gel beads filled with halloysite nanotubes. Appl Clay Sci 72:132–137. https://doi.org/10.1016/j.clay.2012.12.001

    Article  CAS  Google Scholar 

  56. Cavallaro G, Lazzara G, Rozhina E et al (2019) Organic-nanoclay composite materials as removal agents for environmental decontamination. RSC Adv 9:40553–40564. https://doi.org/10.1039/c9ra08230a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu L, Wan Y, Xie Y et al (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216. https://doi.org/10.1016/j.cej.2012.01.136

    Article  CAS  Google Scholar 

  58. Kurczewska J, Cegłowski M, Schroeder G (2019) Alginate/PAMAM dendrimer – Halloysite beads for removal of cationic and anionic dyes. Int J Biol Macromol 123:398–408. https://doi.org/10.1016/j.ijbiomac.2018.11.119

    Article  CAS  PubMed  Google Scholar 

  59. Ruan B, Wu P, Chen M et al (2018) Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol–alginate–kaolin beads for efficient degradation of phenol against unfavorable environmental factors. Ecotoxicol Environ Saf 162:103–111. https://doi.org/10.1016/j.ecoenv.2018.06.058

    Article  CAS  PubMed  Google Scholar 

  60. Salemi E, Tessari U, Colombani N, Mastrocicco M (2010) Improved gravitational grain size separation method. Appl Clay Sci 48:612–614. https://doi.org/10.1016/j.clay.2010.03.014

    Article  CAS  Google Scholar 

  61. Shi P, He P, Teh TKH et al (2011) Parametric analysis of shape changes of alginate beads. Powder Technol 210:60–66. https://doi.org/10.1016/j.powtec.2011.02.023

    Article  CAS  Google Scholar 

  62. Bakatula EN, Richard D, Neculita CM, Zagury GJ (2018) Determination of point of zero charge of natural organic materials. Environ Sci Pollut Res 25:7823–7833. https://doi.org/10.1007/s11356-017-1115-7

    Article  CAS  Google Scholar 

  63. Wibowo N, Setyadhi L, Wibowo D et al (2007) Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption. J Hazard Mater 146:237–242. https://doi.org/10.1016/j.jhazmat.2006.12.011

    Article  CAS  PubMed  Google Scholar 

  64. Khalfaoui A, Khelifi MN, Khelfaoui A et al (2022) The adsorptive removal of bengal rose by artichoke leaves: optimization by full factorials design. Water (Switzerland). https://doi.org/10.3390/w14142251

    Article  Google Scholar 

  65. Whang TJ, Huang HY, Hsieh MT, Chen JJ (2009) Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue. Int J Mol Sci 10:4707–4718. https://doi.org/10.3390/ijms10114707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. El -Habacha M, Dabagh A, Lagdali S et al (2023) Methylene blue dye’s adsorption on a natural clay surface from Southeast Morocco: modeling and experimental equilibrium studies. Environ Sci Pollut Res. https://doi.org/10.21203/RS.3.RS-2306837/V1

    Article  Google Scholar 

  67. Mukhopadhyay T, Dey TK, Chowdhury R, Chakrabarti A (2015) Structural damage identification using response surface-based multi-objective optimization: a comparative study. Arab J Sci Eng 40:1027–1044. https://doi.org/10.1007/s13369-015-1591-3

    Article  Google Scholar 

  68. Wang Q, Song Y (2018) Clay minerals and major elements concentrations of Zhuanglang Miocene red clay in Longzhong Basin, China. Data Br 17:297–304. https://doi.org/10.1016/j.dib.2018.01.030

    Article  Google Scholar 

  69. Ganguli JN, Agarwal S (2012) Removal of a basic dye from aqueous solution by a natural kaolinitic clay-adsorption and kinetic studies. Adsorpt Sci Technol 30:171–182. https://doi.org/10.1260/0263-6174.30.2.171

    Article  CAS  Google Scholar 

  70. Omer OS, Hussein BHM, Ouf AM et al (2018) An organified mixture of illite-kaolinite for the removal of Congo red from wastewater. J Taibah Univ Sci 12:858–866. https://doi.org/10.1080/16583655.2018.1540179

    Article  Google Scholar 

  71. Gil A, Santamaría L, Korili SA et al (2021) A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: synthesis, perspectives and applications. J Environ Chem Eng 9:105808. https://doi.org/10.1016/j.jece.2021.105808

    Article  CAS  Google Scholar 

  72. Mustapha S, Ndamitso MM, Abdulkareem AS et al (2019) Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon 5:e02923. https://doi.org/10.1016/j.heliyon.2019.e02923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bergaya F, Lagaly G (2013) Chapter 7.1—Purification of natural clays. In: Bergaya F, Lagaly GBT-D (eds) Handbook of Clay Science. Elsevier, Amsterdam, pp 213–221

    Chapter  Google Scholar 

  74. Awasthi A, Jadhao P, Kumari K (2019) Clay nano-adsorbent: structures, applications and mechanism for water treatment. SN Appl Sci 1:1076. https://doi.org/10.1007/s42452-019-0858-9

    Article  CAS  Google Scholar 

  75. Środoń J, Drits VA, McCarty DK et al (2001) Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays Clay Miner 49:514–528. https://doi.org/10.1346/CCMN.2001.0490604

    Article  Google Scholar 

  76. Moon DH, Kim SJ, Nam SW, Cho HG (2021) X-ray diffraction analysis of clay particles in ancient baekje black pottery: indicator of the firing parameters. Minerals. https://doi.org/10.3390/min11111239

    Article  Google Scholar 

  77. Jozanikohan G, Abarghooei MN (2022) The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. J Pet Explor Prod Technol 12:2093–2106. https://doi.org/10.1007/s13202-021-01449-y

    Article  Google Scholar 

  78. Carrado KA, Decarreau A, Petit S et al (2006) Chapter 4 synthetic clay minerals and purification of natural clays. In: Bergaya F, Theng BKG, Lagaly GBT-D (eds) Handbook of clay science. Elsevier, Amsterdam, pp 115–139

    Chapter  Google Scholar 

  79. Maged A, Kharbish S, Ismael IS, Bhatnagar A (2020) Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environ Sci Pollut Res Int 27:32980–32997. https://doi.org/10.1007/s11356-020-09267-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Madejová J, Gates WP, Petit S (2017) Chapter 5—IR spectra of clay minerals. In: Gates WP, Kloprogge JT, Madejová J, Bergaya FBTD (eds) Infrared and Raman spectroscopies of clay minerals. Elsevier, Amsterdam, pp 107–149

    Chapter  Google Scholar 

  81. Rahim SNA, Sulaiman A, Hamzah F et al (2013) Enzymes encapsulation within calcium alginate-clay beads: characterization and application for cassava slurry saccharification. Procedia Eng 68:411–417. https://doi.org/10.1016/j.proeng.2013.12.200

    Article  CAS  Google Scholar 

  82. Hoang-Minh T, Kasbohm J, Nguyen-Thanh L et al (2019) Use of TEM-EDX for structural formula identification of clay minerals : a case study of Di Linh bentonite. Vietnam J Appl Crystallogr 52:133–147

    Article  CAS  Google Scholar 

  83. Panda L, Das B, Rao DS, Mishra BK (2011) Application of dolochar in the removal of cadmium and hexavalent chromium ions from aqueous solutions. J Hazard Mater 192:822–831. https://doi.org/10.1016/j.jhazmat.2011.05.098

    Article  CAS  PubMed  Google Scholar 

  84. Aziz F, Achaby ME, Lissaneddine A et al (2020) Composites with alginate beads: a novel design of nano-adsorbents impregnation for large-scale continuous flow wastewater treatment pilots. Saudi J Biol Sci 27:2499–2508. https://doi.org/10.1016/j.sjbs.2019.11.019

    Article  CAS  PubMed  Google Scholar 

  85. Barreca S, Orecchio S, Pace A (2014) The effect of montmorillonite clay in alginate gel beads for polychlorinated biphenyl adsorption: isothermal and kinetic studies. Appl Clay Sci 99:220–228. https://doi.org/10.1016/j.clay.2014.06.037

    Article  CAS  Google Scholar 

  86. Viscusi G, Lamberti E, Gerardi C et al (2022) Encapsulation of grape (Vitis vinifera L.) pomace polyphenols in soybean extract-based hydrogel beads as carriers of polyphenols and pH-monitoring devices. Gels 8:734. https://doi.org/10.3390/gels8110734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thakur S, Verma A, Raizada P et al (2022) Bentonite-based sodium alginate/ dextrin cross-linked poly (acrylic acid) hydrogel nanohybrids for facile removal of paraquat herbicide from aqueous solutions. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.133002

    Article  PubMed  Google Scholar 

  88. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82. https://doi.org/10.1016/j.carbpol.2010.10.061

    Article  CAS  Google Scholar 

  89. Moussout H, Ahlafi H, Aazza M et al (2020) Interfacial electrochemical properties of natural Moroccan Ghassoul (stevensite) clay in aqueous suspension. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03634

    Article  PubMed  PubMed Central  Google Scholar 

  90. Râpă M, Ţurcanu AA, Matei E et al (2021) Adsorption of copper (II) from aqueous solutions with alginate/clay hybrid materials. Materials (Basel). https://doi.org/10.3390/ma14237187

    Article  PubMed  Google Scholar 

  91. Idris S, Iyaka YA, Ndamitso MM et al (2012) Evaluation of kinetic models of copper and lead uptake from dye wastewater by activated pride of barbados shell. Am J Chem 1:47–51. https://doi.org/10.5923/j.chemistry.20110102.10

    Article  Google Scholar 

  92. Egbosiuba TC, Abdulkareem AS, Kovo AS et al (2020) Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: adsorption isotherm, kinetics and thermodynamics. Chem Eng Res Des 153:315–336. https://doi.org/10.1016/j.cherd.2019.10.016

    Article  CAS  Google Scholar 

  93. Allouss D, Essamlali Y, Amadine O et al (2019) Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Adv 9:37858–37869. https://doi.org/10.1039/c9ra06450h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhao M, Liu P (2009) Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder. Desalination 249:331–336. https://doi.org/10.1016/j.desal.2009.01.037

    Article  CAS  Google Scholar 

  95. Mourabet M, El Boujaady H, El Rhilassi A et al (2011) Defluoridation of water using Brushite: Equilibrium, kinetic and thermodynamic studies. Desalination 278:1–9. https://doi.org/10.1016/j.desal.2011.05.068

    Article  CAS  Google Scholar 

  96. Singh NB, Susan ABH (2018) Polymer nanocomposites for water treatments In: polymer-based nanocomposites for energy and environmental applications: Woodhead publishing series in composites science and engineering. University of Ottawa Press, Ottawa, pp 569–595

    Book  Google Scholar 

  97. Said KAM, Ismail NZ, Jama’in RL et al (2018) Application of freundlich and Temkin isotherm to study the removal of Pb(II) via adsorption on activated carbon equipped polysulfone membrane. Int J Eng Technol 7:91–93. https://doi.org/10.14419/ijet.v7i3.18.16683

    Article  Google Scholar 

  98. Sun Y, Li Y, Chen B et al (2022) Methylene blue removed from aqueous solution by encapsulation of bentonite aerogel beads with cobalt alginate. ACS Omega. https://doi.org/10.1021/acsomega.2c04904

    Article  PubMed  PubMed Central  Google Scholar 

  99. Barrak I, Ayouch I, Kassab Z et al (2021) Sodium alginate encapsulated Moroccan clay as eco-friendly and efficient adsorbent for copper ions from aqueous medium. Mater Today Proc 51:2040–2046. https://doi.org/10.1016/j.matpr.2021.07.392

    Article  CAS  Google Scholar 

  100. Pratt A (2014) Environmental applications of magnetic nanoparticles. Front Nanosci 6:259–307. https://doi.org/10.1016/B978-0-08-098353-0.00007-5

    Article  CAS  Google Scholar 

  101. Islam MA, Chowdhury MA, Mozumder MSI, Uddin MT (2021) Langmuir adsorption kinetics in liquid media: interface reaction model. ACS Omega 6:14481–14492. https://doi.org/10.1021/acsomega.1c01449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Keskin Avci S, Erucar I (2018) 2.7 Porous Materials. In : Dincer IBT-CES. Elsevier, Oxford, pp 182–203

    Google Scholar 

  103. Alvarez-Torrellas S, Boutahala M, Boukhalfa N, Munoz M (2019) Effective adsorption of methylene blue dye onto magnetic nanocomposites. Modeling and reuse studies. Appl Sci. https://doi.org/10.3390/app9214563

    Article  Google Scholar 

  104. Patel H (2021) Review on solvent desorption study from exhausted adsorbent. J Saudi Chem Soc 25:101302. https://doi.org/10.1016/J.JSCS.2021.101302

    Article  CAS  Google Scholar 

  105. Veli S, Alyüz B, Aly B (2007) Adsorption of copper and zinc from aqueous solutions by using natural clay. J Hazard Mater 149:226–233. https://doi.org/10.1016/j.jhazmat.2007.04.109

    Article  CAS  PubMed  Google Scholar 

  106. Ely A, Baudu M, Basly J-P, Kankou MOSO (2009) Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules. J Hazard Mater 171:405–409. https://doi.org/10.1016/j.jhazmat.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  107. Belhouchat N, Zaghouane-Boudiaf H, Viseras C (2017) Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl Clay Sci 135:9–15. https://doi.org/10.1016/j.clay.2016.08.031

    Article  CAS  Google Scholar 

  108. Ngah WSW, Fatinathan S (2008) Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chem Eng J 143:62–72. https://doi.org/10.1016/j.cej.2007.12.006

    Article  CAS  Google Scholar 

  109. Viscusi G, Lamberti E, Gorrasi G (2022) Design of a hybrid bio-adsorbent based on Sodium Alginate/Halloysite/Hemp hurd for methylene blue dye removal: kinetic studies and mathematical modeling. Coll Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2021.127925

    Article  Google Scholar 

  110. Bée A, Obeid L, Mbolantenaina R et al (2017) Magnetic chitosan/clay beads: a magsorbent for the removal of cationic dye from water. J Magn Magn Mater 421:59–64. https://doi.org/10.1016/j.jmmm.2016.07.022

    Article  CAS  Google Scholar 

  111. Oussalah A, Boukerroui A, Aichour A, Djellouli B (2019) Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: adsorption and reusability studies. Int J Biol Macromol 124:854–862. https://doi.org/10.1016/j.ijbiomac.2018.11.197

    Article  CAS  PubMed  Google Scholar 

  112. Park J-K, Lee G-M, Lee C-Y et al (2012) Analysis of siloxane adsorption characteristics using response surface methodology. Environ Eng Res 17:117–122. https://doi.org/10.4491/eer.2012.17.2.117

    Article  Google Scholar 

  113. Middleton GV, Church MJ, Coniglio M, et al (2003) Encyclopedia of Sediments and Sedimentary Rocks. In: Encyclopedia of Earth Sciences Series. pp 1–43. https://doi.org/10.1007/978-1-4020-3609-5

  114. Abdullah NH, Mohamed M, Mohd Shohaimi NA et al (2021) Enhancing the decolorization of methylene blue using a low-cost super-absorbent aided by response surface methodology. Molecules. https://doi.org/10.3390/molecules26154430

    Article  PubMed  PubMed Central  Google Scholar 

  115. Som A, Afiqah A, Siti R et al (2021) Optimisation of operating conditions during coagulation - flocculation process in industrial wastewater treatment using Hylocereus undatus foliage through response surface methodology. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-17633-w

    Article  Google Scholar 

  116. El Mrabet I, Ihssane B, Valdés H, Zaitan H (2022) Optimization of Fenton process operating conditions for the treatment of the landfill leachate of Fez city (Morocco). Int J Environ Sci Technol 19:3323–3336. https://doi.org/10.1007/s13762-021-03393-0

    Article  CAS  Google Scholar 

  117. Lau YJ, Karri RR, Mubarak NM et al (2020) Removal of dye using peroxidase-immobilized Buckypaper/polyvinyl alcohol membrane in a multi-stage filtration column via RSM and ANFIS. Environ Sci Pollut Res 27:40121–40134. https://doi.org/10.1007/s11356-020-10045-2

    Article  CAS  Google Scholar 

  118. Akter M, Bhattacharjee M, Dhar AK et al (2021) Cellulose-based hydrogels for wastewater treatment: a concise review. Gels 7:1–28. https://doi.org/10.3390/gels7010030

    Article  CAS  Google Scholar 

  119. Weng CH, Pan YF (2007) Adsorption of a cationic dye (methylene blue) onto spent activated clay. J Hazard Mater 144:355–362. https://doi.org/10.1016/j.jhazmat.2006.09.097

    Article  CAS  PubMed  Google Scholar 

  120. Loqman A, El Bali B, El Gaidoumi A et al (2021) The first application of moroccan perlite as industrial dyes removal. SILICON 14:2813–2838. https://doi.org/10.1007/S12633-021-01056-W

    Article  Google Scholar 

  121. Rashid RA, Jawad AH, Ishak MAM, Kasim NN (2016) KOH-activated carbon developed from biomass waste: adsorption equilibrium, kinetic and thermodynamic studies for Methylene blue uptake. Desalin Water Treat 57:27226–27236. https://doi.org/10.1080/19443994.2016.1167630

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Tanji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6248 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iboustaten, E.M., Bertani, R., Tanji, K. et al. Adsorption behavior of methylene blue using purified moroccan clay/alginate beads: response surface methodology optimization. Reac Kinet Mech Cat 136, 1563–1588 (2023). https://doi.org/10.1007/s11144-023-02408-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02408-w

Keywords

Navigation