Skip to main content
Log in

Effect of complexation between cobinamides and bovine serum albumin on their reactivity toward cyanide

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Here, we report results of spectrophotometric, spectrofluorimetric, and ultrafiltration studies on the reaction between cobinamides (viz. aquahydroxo-, nitro-, aquacyano- and dicyanocobinamides; Cbi) and bovine serum albumin (BSA), and reactivity of formed complexes toward cyanide. (H2O)(HO)Cbi binds BSA at almost equimolar ratio predominantly via amino group of lysine side chains. The mechanism of the reaction involves two steps, i.e. the coordination of amino group on Co(III), and further stabilization of the generated complex. The reaction of (H2O)(NO2)Cbi with BSA is similar with that involving (H2O)(HO)Cbi, and both complexes bind cyanide significantly slower than free (H2O)(HO)Cbi and (H2O)(NO2)Cbi. (H2O)(CN)Cbi binds BSA predominantly via aminogroup as well, however, its coordination proceeds substantially faster and less tightly than in the case of (H2O)(HO)Cbi. Binding of (H2O)(CN)Cbi and (H2O)(HO)Cbi occurs at different sites of BSA as was indicated by spectrofluorimetric titration. Reaction of the complex between (H2O)(CN)Cbi and BSA with cyanide proceeds much faster than in the case of the complex between (H2O)(HO)Cbi and BSA. (CN)2Cbi is partially decyanated by BSA, however, its binding by BSA is relatively low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brown KL (2005) Chemistry and enzymology of vitamin B12. Chem Rev 105:2075–2149. https://doi.org/10.1021/cr030720z

    Article  CAS  PubMed  Google Scholar 

  2. Bridwell-Rabb J, Grell TAJ, Drennan CL (2018) A rich man, poor man story of S-adenosylmethionine and cobalamin revisited. Annu Rev Biochem 87:555–584. https://doi.org/10.1146/annurev-biochem-062917-012500

    Article  CAS  PubMed  Google Scholar 

  3. Birch CS, Brasch NE, McCaddon A, Williams JHH (2009) A novel role for vitamin B12: cobalamins are intracellular antioxidants in vitro. Free Radic Biol Med 47:184–188. https://doi.org/10.1016/j.freeradbiomed.2009.04.023

    Article  CAS  PubMed  Google Scholar 

  4. Moreira ES, Brasch NE, Yun J (2011) Vitamin B12 protects against superoxide-induced cell injury in human aortic endothelial cells. Free Radic Biol Med 51:876–883. https://doi.org/10.1016/j.freeradbiomed.2011.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan W, Almasieh M, Catrinescu M-M, Levin LA (2018) Cobalamin-associated superoxide scavenging in neuronal cells is a potential mechanism for vitamin B12–deprivation optic neuropathy. Am J Pathol 188:160–172. https://doi.org/10.1016/j.ajpath.2017.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forsyth JC, Mueller PD, Becker CE et al (1993) Hydroxocobalamin as a cyanide antidote: safety, efficacy and pharmacokinetics in heavily smoking normal volunteers. J Toxicol Clin Toxicol 31:277–294. https://doi.org/10.3109/15563659309000395

    Article  CAS  PubMed  Google Scholar 

  7. Borron SW, Baud FJ, Mégarbane B, Bismuth C (2007) Hydroxocobalamin for severe acute cyanide poisoning by ingestion or inhalation. Am J Emerg Med 25:551–558. https://doi.org/10.1016/j.ajem.2006.10.010

    Article  PubMed  Google Scholar 

  8. Thompson JP, Marrs TC (2012) Hydroxocobalamin in cyanide poisoning. Clin Toxicol 50:875–885. https://doi.org/10.3109/15563650.2012.742197

    Article  CAS  Google Scholar 

  9. Bebarta VS, Tanen DA, Boudreau S et al (2014) Intravenous cobinamide versus hydroxocobalamin for acute treatment of severe cyanide poisoning in a swine (Sus scrofa) model. Ann Emerg Med 64:612–619. https://doi.org/10.1016/j.annemergmed.2014.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zelder F (2015) Recent trends in the development of vitamin B12 derivatives for medicinal applications. Chem Commun 51:14004–14017. https://doi.org/10.1039/C5CC04843E

    Article  CAS  Google Scholar 

  11. Brenner M, Mahon SB, Lee J et al (2010) Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring. J Biomed Opt 15:017001. https://doi.org/10.1117/1.3290816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hayward GC, Hill HAO, Pratt JM et al (1965) The chemistry of vitamin B12. Part IV. The thermodynamic trans-effect. J Chem Soc. https://doi.org/10.1039/JR9650006485

    Article  Google Scholar 

  13. George P, Irvine DH, Glauser SC (1960) The influence of chelation in determining the reactivity of the iron in hemoproteins, and the cobalt in vitamin B12 derivatives. Ann N Y Acad Sci 88:393–415. https://doi.org/10.1111/j.1749-6632.1960.tb20038.x

    Article  CAS  PubMed  Google Scholar 

  14. Chan A, Jiang J, Fridman A et al (2015) Nitrocobinamide, a new cyanide antidote that can be administered by intramuscular injection. J Med Chem 58:1750–1759. https://doi.org/10.1021/jm501565k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salnikov DS, Makarov SV, van Eldik R et al (2014) Kinetics and mechanism of the reaction of hydrogen sulfide with diaquacobinamide in aqueous solution. Eur J Inorg Chem. https://doi.org/10.1002/ejic.201402082

    Article  PubMed  PubMed Central  Google Scholar 

  16. Salnikov DS, Kucherenko PN, Dereven’kov IA et al (2014) Kinetics and mechanism of the reaction of hydrogen sulfide with cobalamin in aqueous solution. Eur J Inorg Chem. https://doi.org/10.1002/ejic.201301340

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ng PC, Hendry-Hofer TB, Garrett N et al (2019) Intramuscular cobinamide versus saline for treatment of severe hydrogen sulfide toxicity in swine. Clin Toxicol 57:189–196. https://doi.org/10.1080/15563650.2018.1504955

    Article  CAS  Google Scholar 

  18. Brenner M, Benavides S, Mahon SB et al (2014) The vitamin B12 analog cobinamide is an effective hydrogen sulfide antidote in a lethal rabbit model. Clin Toxicol 52:490–497. https://doi.org/10.3109/15563650.2014.904045

    Article  CAS  Google Scholar 

  19. Bebarta VS, Garrett N, Brenner M et al (2017) Efficacy of intravenous cobinamide versus hydroxocobalamin or saline for treatment of severe hydrogen sulfide toxicity in a swine (Sus scrofa) model. Acad Emerg Med 24:1088–1098. https://doi.org/10.1111/acem.13213

    Article  PubMed  Google Scholar 

  20. Broderick KE, Singh V, Zhuang S et al (2005) Nitric oxide scavenging by the cobalamin precursor cobinamide. J Biol Chem 280:8678–8685. https://doi.org/10.1074/jbc.M410498200

    Article  CAS  PubMed  Google Scholar 

  21. Broderick KE, Alvarez L, Balasubramanian M et al (2007) Nitrosyl-cobinamide, a new and direct nitric oxide releasing drug effective in vivo. Exp Biol Med 232:1432–1440. https://doi.org/10.3181/0703-rm-70

    Article  CAS  Google Scholar 

  22. Spitler R, Schwappacher R, Wu T et al (2013) Nitrosyl-cobinamide (NO-Cbi), a new nitric oxide donor, improves wound healing through cGMP/cGMP-dependent protein kinase. Cell Signal 25:2374–2382. https://doi.org/10.1016/j.cellsig.2013.07.029

    Article  CAS  PubMed  Google Scholar 

  23. Kalyanaraman H, Ramdani G, Joshua J et al (2017) Direct NO donor regulates osteoblast and osteoclast functions and increases bone mass in ovariectomized mice. J Bone Miner Res 32:46–59. https://doi.org/10.1002/jbmr.2909

    Article  CAS  PubMed  Google Scholar 

  24. Ó Proinsias K, Giedyk M, Sharina IG et al (2012) Synthesis of new hydrophilic and hydrophobic cobinamides as NO independent sGC activators. ACS Med Chem Lett 3:476–479. https://doi.org/10.1021/ml300060n

    Article  CAS  Google Scholar 

  25. Sharina I, Sobolevsky M, Doursout M-F et al (2012) Cobinamides are novel coactivators of nitric oxide receptor that target soluble guanylyl cyclase catalytic domain. J Pharmacol Exp Ther 340:723–732. https://doi.org/10.1124/jpet.111.186957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dereven’kov IA, Makarov SV, Bui Thi TT et al (2018) Studies on the reduction of dehydroascorbic acid by glutathione in the presence of aquahydroxocobinamide. Eur J Inorg Chem. https://doi.org/10.1002/ejic.201800066

    Article  Google Scholar 

  27. Schwaerzer GK, Kalyanaraman H, Casteel DE et al (2019) Aortic pathology from protein kinase G activation is prevented by an antioxidant vitamin B12 analog. Nat Commun 10:3533. https://doi.org/10.1038/s41467-019-11389-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dereven’kov IA, Salnikov DS, Makarov SV et al (2013) Comparative study of reaction of cobalamin and cobinamide with thiocyanate. J Inorg Biochem 125:32–39. https://doi.org/10.1016/j.jinorgbio.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  29. Bujacz A (2012) Structures of bovine, equine and leporine serum albumin. Acta Cryst D 68:1278–1289. https://doi.org/10.1107/S0907444912027047

    Article  CAS  Google Scholar 

  30. Dereven’kov IA, Hannibal L, Makarov SV et al (2018) Characterization of the complex between native and reduced bovine serum albumin with aquacobalamin and evidence of dual tetrapyrrole binding. J Biol Inorg Chem 23:725–738. https://doi.org/10.1007/s00775-018-1562-8

    Article  CAS  PubMed  Google Scholar 

  31. Dereven’kov IA, Makarov SV, Molodtsov PA (2020) Effect of bovine serum albumin on redox and ligand exchange reactions involving aquacobalamin. Macroheterocycles 13:223–228. https://doi.org/10.6060/mhc200498d

    Article  CAS  Google Scholar 

  32. Taylor RT, Hanna M (1970) Binding of aquocobalamin to the histidine residues in bovine serum albumin. Arch Biochem Biophys 141:247–257. https://doi.org/10.1016/0003-9861(70)90129-3

    Article  CAS  PubMed  Google Scholar 

  33. Hendry-Hofer TB, Ng PC, McGrath AM et al (2020) Intramuscular aminotetrazole cobinamide as a treatment for inhaled hydrogen sulfide poisoning in a large swine model. Ann NY Acad Sci 1479:159–167. https://doi.org/10.1111/nyas.14339

    Article  CAS  PubMed  Google Scholar 

  34. Zhou K, Zelder F (2011) One-step synthesis of α/β cyano-aqua cobinamides from vitamin B12 with Zn(II) or Cu(II) salts in methanol. J Porphyr Phthalocyanines 15:555–559. https://doi.org/10.1142/S1088424611003446

    Article  CAS  Google Scholar 

  35. Dereven’kov IA, Shpagilev NI, Makarov SV (2018) Mechanism of the reaction between cobalamin(II) and periodate. Russ J Phys Chem A 92:2182–2186. https://doi.org/10.1134/S0036024418110080

    Article  Google Scholar 

  36. Barker HA, Smyth RD, Weissbach H et al (1960) Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5,6-dimethylbenzimidazole. J Biol Chem 235:480–488. https://doi.org/10.1016/S0021-9258(18)69550-X

    Article  CAS  PubMed  Google Scholar 

  37. Macii F, Biver T (2021) Spectrofluorimetric analysis of the binding of a target molecule to serum albumin: tricky aspects and tips. J Inorg Biochem 216:111305. https://doi.org/10.1016/j.jinorgbio.2020.111305

    Article  CAS  PubMed  Google Scholar 

  38. Mendoza VL, Vachet RW (2009) Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom Rev 28:785–815. https://doi.org/10.1002/mas.20203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baidwin DA, Betterton EA, Pratt JM (1983) The chemistry of vitamin B12. Part 20. diaquocobinamide: pK values and evidence for conformational isomers. J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9830000217

    Article  Google Scholar 

  40. Grimsley GR, Scholtz JM, Pace CN (2009) A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci 18:247–251. https://doi.org/10.1002/pro.19

    Article  CAS  PubMed  Google Scholar 

  41. Chan A, Balasubramanian M, Blackledge W et al (2010) Cobinamide is superior to other treatments in a mouse model of cyanide poisoning. Clin Toxicol 48:709–717. https://doi.org/10.3109/15563650.2010.505197

    Article  CAS  Google Scholar 

  42. Marques HM, Bradley JC, Brown KL, Brooks H (1993) Placing hydroxide in the thermodynamic tram influence order of the cobalt corrinoids: equilibrium constants for the reaction of some ligands with aquahydroxocobinamide. Inorg Chim Acta 209:161–169. https://doi.org/10.1016/S0020-1693(00)85137-3

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Project No. 21-73-10057, https://rscf.ru/project/21-73-10057/) to IAD. The study was carried out using the resources of the Center for Shared Use of Scientific Equipment of the ISUCT (with the support of the Ministry of Science and Higher Education of Russia, Grant No. 075-15-2021-671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia A. Dereven’kov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereven’kov, I.A., Osokin, V.S., Molodtsov, P.A. et al. Effect of complexation between cobinamides and bovine serum albumin on their reactivity toward cyanide. Reac Kinet Mech Cat 135, 1469–1483 (2022). https://doi.org/10.1007/s11144-022-02216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02216-8

Keywords

Navigation