Skip to main content
Log in

Green synthesis of bis pyrazole-triazole and azo-linked triazole hybrids using an efficient and novel cobalt nanocatalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the current work, new cobalt incorporated fluorapatite encapsulated iron oxide nanocatalyst (γ-Fe2O3@FAp@Co) was prepared and characterized by using FT-IR, XRD, SEM, TEM, VSM, and EDX techniques. The catalyst was utilized in the synthesis of novel derivatives of symmetric bis-triazoles by the reaction of various aldehydes and butane-1,4-diyl bis(hydrazinecarbimidothioate) in ethanol at room temperature. γ-Fe2O3@FAp@Co was easily removed from the reaction mixture using an external magnet and was used several times without decreased catalytic properties. This method provided a novel approach for the green synthesis of bis-triazoles in excellent yield (88–95%) and reasonable reaction time (60–80 min). The structures of prepared compounds were confirmed by analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Al-Masoudi IA, Al-Soud YA, Al-Salihi NJ, Al-Masoudi NA (2006) 1,2,4-Triazoles: synthetic approaches and pharmacological importance. Chem Heterocycl Compd 42(11):1377–1403

    Article  CAS  Google Scholar 

  2. Pearson MM, Rogers D, Cleary JD, Chapman SW (2003) Voriconazole: a new triazole antifungal agent. Ann Pharmacother 37(3):420–432

    Article  CAS  PubMed  Google Scholar 

  3. Greer ND (2007) Posaconazole (Noxafil): a new triazole antifungal agent. Bayl Uni Med Cent 20(2):188–196

    Google Scholar 

  4. Gural’skiy IA, Reshetnikov VI, Omelchenko IV, Szebesczyk A, Gumienna-Konteckac E, Fritskya IO, (2017) Synthesis, crystal structures and spectral characterization of chiral 4-R-1,2,4-triazoles. J Mol Struct 1127:164–168

    Article  CAS  Google Scholar 

  5. Fan YL, Ke X, Liub M (2018) Coumarin-triazole hybrids and their biological activities. J Heterocycl Chem 55(4):791–802

    Article  CAS  Google Scholar 

  6. Süleymanoğlu N, Ustabaş R, Direkelc S, Alpasland YB, Ünvere Y (2017) 1,2,4-Triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. J Mol Struct 1150:82–87

    Article  CAS  Google Scholar 

  7. Kharb R, Sharma PC, Yar MS (2011) Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 26(1):1–21

    Article  CAS  PubMed  Google Scholar 

  8. Hu YQ, Zhang S, Xu Z, Lv ZS, Liu ML, Feng LS (2017) 4-Quinolone hybrids and their antibacterial activities. Eur J Med Chem 140:335–345

    Article  CAS  Google Scholar 

  9. Chougala BM, Samundeeswari S, Holiyachi M, Shastri LA, Dodamani S, Jalapure S, Dixit SR, Joshi SD, Sunagar VA (2017) Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur J Med Chem 125:101–116

    Article  CAS  PubMed  Google Scholar 

  10. Fu N, Wang S, Zhang Y, Zhang C, Yang D, Weng L, Zhao B (2017) Efficient click chemistry towards fatty acids containing 1,2,3-triazole: design and synthesis as potential antifungal drugs for candida albicans. Eur J Med Chem 136:596–602

    Article  CAS  PubMed  Google Scholar 

  11. Banu KM, Dinaker A, Ananthnarayan C (1999) Synthesis, characterization of antimicrobial studies and pharmacological screening of some substituted 1,2,3-triazoles. Indian J Pharm Sci 61(4):202–205

    CAS  Google Scholar 

  12. Chen LZ, Sun WW, Bo L, Wang JQ, Xiu C, Tang WJ, Shi JB, Zhou HP, Liu XH (2017) New arylpyrazoline-coumarins: synthesis and anti-inflammatory activity. Eur J Med Chem 138:170–181

    Article  CAS  PubMed  Google Scholar 

  13. Coskun D, Erkisa M, Ulukaya E, Coskun MF, Ari F (2017) Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur J Med Chem 136:212–222

    Article  CAS  PubMed  Google Scholar 

  14. Akhtar J, Khan AA, Ali Z, Haider R, Yar MS (2017) Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur J Med Chem 125:143–189

    Article  CAS  PubMed  Google Scholar 

  15. Gujjar R, Marwaha A, White J, White L, Creason S, Shackleford DM, Baldwin J, Charman WN, Buckner FS, Charman S, Rathod PK, Phillips MA (2009) Identification of a metabolically stable triazolopyrimidinebased dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J Med Chem 52(7):1864–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu YQ, Gao C, Zhang S, Xu L, Xu Z, Feng LS, Wu X, Zhao F (2017) Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 139:22–47

    Article  CAS  PubMed  Google Scholar 

  17. Wen X, Zhou Y, Zeng J, Liu X (2020) Recent development of 1,2,4-triazole-containing compounds as anticancer agents. Curr Topics Med Chem 20(16):1441–1460

    Article  CAS  Google Scholar 

  18. Duran A, Dogan HN, Rollas H (2002) Synthesis and preliminary anticancer activity of new 1,4-dihydro-3- (3-hydroxy-2- naphthyl)-4-substituted-5H-1,2,4-triazoline-5-thiones. Farmaco 57(7):559–564

    Article  CAS  PubMed  Google Scholar 

  19. Dheer D, Singh V, Shankar R (2017) Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg Chem 71:30–54

    Article  CAS  PubMed  Google Scholar 

  20. Peyton LR, Gallagher S, Hashemzadeh M (2015) Triazole antifungals: a review. Drugs Today 51(12):705–718

    CAS  Google Scholar 

  21. Zhou CH, Wang Y (2012) Recent researches in triazole compounds as medicinal drugs. Curr Med Chem 19(2):239–280

    Article  CAS  PubMed  Google Scholar 

  22. Aggarwal R, Sumran G (2020) An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 1(205):112652

    Article  CAS  Google Scholar 

  23. (a) Da Silva FDC, De Souza MCBV, Frugulhetti IIP, Castro HC, Souza SLDO, De Souza TML, Rodrigues DQ, Souza AMT, Abreu PA, Passamani F, Rodrigues CR, Ferreira VF (2009) Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur J Med Chem 44 (1):373-383 (b) Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, McRee DE, Elder JH, Stout CD, Torbett BE (2008) A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem 51 (20):6263-6270

  24. (a) Cocklin S, Gopi H, Querido B, Nimmagadda M, Kuriakose S, Cicala C, Ajith S, Baxter S, Arthos J, Martin-Garcia J, Chaiken LM (2007) Broad-Spectrum Anti-Human Immunodeficiency Virus (HIV) Potential of a Peptide HIV Type 1 Entry Inhibitor. J Virol 81 (7):3645–3648 (b) Brik A, Alexandratos J, Lin YC, Elder JH, Olson AJ, Wlodawer A, Goodsell DS, Wong CH (2005) 1,2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. Chem Bio Chem 6 (7):1167-1169.

  25. (a) Yu WJ, Rao Q, Wang M, Tian Z, Lin D, Liu XR, Wang JX (2006) The Hsp90 inhibitor 17-allylamide-17-demethoxygeldanamycin induces apoptosis and differentiation of Kasumi-1 harboring the Asn822Lys KIT mutation and down-regulates KIT protein level, Leukemia Res. Leuk Res 30 575-582. (b) Peterson LB, Blagg SJB (2010) Click chemistry to probe Hsp90: Synthesis and evaluation of a series of triazole-containing novobiocin analogues. Bioorg Med Chem Lett 20 (13):3957-3960

  26. (a) Nahrwold M, Bogner T, Eissler S, Verma S, Sewald N (2010) ‘‘Clicktophycin52”: a bioactive cryptophycin-52 triazole analogue. Org Lett 12 (5):1064–1067. (b) Doiron J, Soultan AH, Richard R, Toure MM, Picot N, Richard R, Cuperlovic-Culf M, Robichaud GA, Touaibia M, 2011 Synthesis and structure activity relationship of 1- and 2-substituted-1,2,3-triazole letrozole-based analogues as aromatase inhibitors Eur J Med Chem 46 9 4010 4024

  27. Fichtali I, Chraibi M, Aroussi FE, Ben-Tama A, Hadrami EME, Benbrahim KF, Stiriba SE (2016) Synthesis of some 1,2,3-triazoles derivatives and evaluation of their antimicrobial activity. Der Pharma Chem 8(5):236–242

    CAS  Google Scholar 

  28. Abdel-Wahab BF, Mohamed HA, Awad GEA (2015) Synthesis and biological activity of some new 1,2,3-triazole hydrazone derivatives. Eur Chem Bull 4(2):106–109

    Google Scholar 

  29. Cao F, Duan ZC, Zhu H, Wang D (2021) Deoxygenative coupling of 2-aryl-ethanols catalyzed by unsymmetrical pyrazolyl-pyridinyl-triazole ruthenium. Mol Catal 503:111391–111395

    Article  CAS  Google Scholar 

  30. Zhu G, Duan ZC, Zhu H, Qi M, Wang D (2021) Iridium and copper supported on silicon dioxide as chemoselective catalysts for dehydrogenation and borrowing hydrogen reactions. Mol Catal 505:111516–111522

    Article  CAS  Google Scholar 

  31. Hu W, Zhang Y, Zhu H, Ye D, Wang D (2019) Unsymmetrical triazolyl-naphthyridinyl-pyridine bridged highly active copper complexes supported on reduced graphene oxide and their application in water. Green Chem 21:5345–5351

    Article  CAS  Google Scholar 

  32. Ge C, Sang X, Yao W, Zhang L, Wang D (2018) Unsymmetrical indazolyl-pyridinyl-triazole ligand-promoted highly active iridium complexes supported on hydrotalcite and its catalytic application in water. Green Chem 20:1805–1812

    Article  CAS  Google Scholar 

  33. Wu Q, Pan L, Du G, Zhang C, Wang D (2018) Preparation of pyridyltriazole ruthenium complexes as effective catalysts for the selective alkylation and one-pot C-H hydroxylation of 2-oxindole with alcohols and mechanism exploration. Org Chem Front 5:2668–2675

    Article  CAS  Google Scholar 

  34. Huang R, Yang Y, Wang DS, Zhang L, Wang D (2018) Where does Au coordinate to N-(2-pyridiyl)benzotriazole: gold-catalyzed chemoselective dehydrogenation and borrowing hydrogen reactions Org Chem Front 5:203–209.

  35. Xu Z, Wang DS, Yu X, Yang Y, Wang D (2017) Tunable triazole-phosphine-copper catalysts for the synthesis of 2-aryl-1H-benzo[d]imidazoles from benzyl alcohols and diamines by acceptorless dehydrogenation and borrowing Hydrogen reactions. Adv Synth Catal 359(19):3332–3340

    Article  CAS  Google Scholar 

  36. Rajalekshmi KM, Jaleel CA, Azooz MM, Panneerselvam R (2009) Effect of triazole growth regulators on growth and pigment contents in plectranthus aromaticus and plectranthus vettiveroids. Adv Biol Res 3(3–4):117–122

    Google Scholar 

  37. Kishorekumar A, Jaleel CA, Manivannan P, Sankar B, Sridharan R, Panneerselvam R (2007) Comparative effects of different triazole compounds on growth, photosynthetic pigments and carbohydrate metabolism of Solenostemon rotundifolius. Colloids Surf B 15:60 (2):207–212.

  38. Wolf FT (1960) Influence of amino triazole on the chloroplast pigments of wheat seedlings. Nature 188(4745):164–165

    Article  CAS  Google Scholar 

  39. Khalil IA, Mercer EI, Wang ZX (1990) Effect of triazole fungicides on the growth, chloroplast pigments and sterol biosynthesis of maize (Zea mays L.) Plant Sci. (Limerick) 66 (1):21–28.

  40. Yeung KS, Farkas ME (2005) A base-catalyzed, direct synthesis of 3,5-disubstituted 1,2,4-triazoles from nitriles and hydrazides. Tetrahedron Lett 46(19):3429–3432

    Article  CAS  Google Scholar 

  41. Huntsman E, Balsells J (2005) New Method for the General Synthesis of [1,2,4]Triazolo[1,5-a]pyridines. Eur J Org Chem 17:3761–3765

    Article  CAS  Google Scholar 

  42. Batchelor DV, Beal DM, Brown BT, Ellis D, Gordon DW, Johnson SP, Mason HJ, Ralph MJ, Underwood TJ, Wheeler S (2008) Acid-mediated synthesis of 3-N, N-dialkyl-amino-1,2,4-triazoles. Synlett 12:2421–2424

    Google Scholar 

  43. Ueda S, Nagasawa H (2009) Facile synthesis of 1,2,4-triazoles via a Copper-catalyzed tandem addition-oxidative cyclization. J Am Chem Soc 131(42):15080–15081

    Article  CAS  PubMed  Google Scholar 

  44. Yin P, Ma PWB, Chen Y, Huang WC, Deng Y, He L (2009) Highly efficient cyanoimidation of aldehydes. Org Lett 11(23):5482–5485

    Article  CAS  PubMed  Google Scholar 

  45. Appukkuttan P, Dehaen W, Valery VF, Eycken EVD (2004) A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a Copper(I)-catalyzed three-component reaction. Org Lett 6(23):4223–4225

    Article  CAS  PubMed  Google Scholar 

  46. Gangu KK, Maddila S, Maddila SN, Jonnalagadda SB (2016) Nanostructured Samarium doped fluorapatites and their catalytic activity towards synthesis of 1,2,4-triazoles. Molecules 21(10):1281. https://doi.org/10.3390/molecules21101281

    Article  CAS  PubMed Central  Google Scholar 

  47. Jayavant DP, Dattaprasad MP (2014) [C16MPy]AlCl3Br: an efficient novel ionic liquid for synthesis of novel 1,2,4-triazolidine-3-thiones in water. RSC Adv 4:14314–14319

    Article  CAS  Google Scholar 

  48. Koparır M, Çetin A, Cansiz A (2005) 5-Furan-2yl[1,3,4]oxadiazole-2-thiol, 5-Furan-2yl-4H [1,2,4] triazole-3-thiol and Their Thiol-Thione Tautomerism. Molecules 10(2):475–480

    Article  PubMed  PubMed Central  Google Scholar 

  49. Massart R, Dubois E, Cabuil V, Hasmona E (1995) Preparation and properties of monodisperse magnetic fluids. J Magn Magn Mater 149(1–2):1–5

    Article  CAS  Google Scholar 

  50. Tang BZ, Geng Y, Lam JWY, Li B, Jing X, Wang X, Wang F, Pakhomov AB, Zhang XX (1999) Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite films. Chem Mater 11(6):1581–1589

    Article  CAS  Google Scholar 

  51. Rezaei I, Mamaghani M (2021) An efficient green synthesis of polyfunctional pyrazole-triazole hybrids and bis-triazoles via chromium incorporated fluorapatite encapsulated iron oxide nanocatalyst. Current Chem Lett 10(4):2220–2522

    Article  Google Scholar 

  52. Jahanshahi P, Mamaghani M, Haghbin F, Hossein Nia R, Rassa M (2018) One-pot chemoselective synthesis of novel pyrrole-substituted pyrido[2,3-d]pyrimidines using [γ-Fe2O3@ HAp-SO3H] as an efficient nanocatalyst. J Mol Struct 1155:520–529

    Article  CAS  Google Scholar 

  53. Saberikhah E, Mamaghani M, Mahmoodi NO (2021) γ-Fe2O3@HAp@PBABMD@Cu magnetic nanoparticles: efficient, green, and recyclable novel nanocatalyst for the synthesis of densely functionalized pyrrole-pyrido[2,3-d]pyrimidine hybrids. J Chin Chem Soc 68(5):902–916

    Article  CAS  Google Scholar 

  54. Mirfarjood SA, Mamaghani M, Sheykhan M (2017) Copper-exchanged magnetic-FAp: surface catalysis in decarboxylative coupling of a-oxocarboxylic acids with formamides. ChemistrySelect 2(27):8650–8657

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Partial financial support of the Research Council of University of Guilan for this research work is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manouchehr Mamaghani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5053 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, I., Mamaghani, M. Green synthesis of bis pyrazole-triazole and azo-linked triazole hybrids using an efficient and novel cobalt nanocatalyst. Reac Kinet Mech Cat 134, 385–400 (2021). https://doi.org/10.1007/s11144-021-02076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02076-8

Keywords

Navigation