Skip to main content
Log in

Analysis of the Langmuir rate equation in its differential and integrated form for adsorption processes and a comparison with the pseudo first and pseudo second order models

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

We present a new factorized form of the differential Langmuir rate equation and exhaustively examine the conditions under which the Langmuir kinetics reduces to the widely used pseudo-first order (PFO) and pseudo-second order (PSO) models. A graphical method is proposed and tested with experimental data from the literature for assessing the PFO and PSO models as substitutes for the Langmuir equation and estimating the adsorption parameters. We show that the integrated form of the differential Langmuir rate equation, originally derived by Marczewski (Langmuir 26(19):15229–15238, 2010), can be conveniently expressed in terms of five physically interpretable parameters commonly used in adsorption studies, namely the initial solute concentration, the adsorbent dosage, the microscopic adsorption rate constant, the adsorption amount at the equilibrium and the maximum adsorption capacity of the adsorbent. The potential applicability of the integrated Langmuir equation for the determination of the kinetic parameters of the Michaelis–Menten rate equation is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Makrigianni V, Giannakas A, Bairamis F, Papadaki M, Konstaninou I (2017) Adsorption of Cr(VI) from aqueous solutions by HNO3-purified and chemically activated pyrolytic tire char. J Dispers Sci Technol 38(7):992–1002

    Article  CAS  Google Scholar 

  2. Askari H, Ghaedi M, Dashtian K, Azghandi MHA (2017) Rapid and high-capacity ultrasonic assisted adsorption of ternary toxic anionic dyes onto MOF-5-activated carbon: artificial neural networks, partial least squares, desirability function and isotherm and kinetic study. Ultrason Sonochem 37(1):71–82

    Article  CAS  Google Scholar 

  3. Chen Y, Shen C, Rashid S, Li S, Ali BA, Liu J (2017) Biopolymer-induced morphology control of brushite for enhanced defluorination of drinking water. J Colloid Interface Sci 491(1):207–215

    Article  CAS  Google Scholar 

  4. Naeimi S, Faghihian H (2017) Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution. Sep Purif Technol 175:255–265

    Article  CAS  Google Scholar 

  5. Xiang B, Ling D, Lou H, Gu H (2017) 3D hierarchical flower-like nickel ferrite/manganese dioxide toward lead (II) removal from aqueous water. J Hazard Mater 325:178–188

    Article  CAS  Google Scholar 

  6. Patra BN, Majhi D (2015) Removal of anionic dyes from water by potash alum doped polyaniline: investigation of kinetics and thermodynamic parameters of adsorption. J Phys Chem B 119(25):8154–8164

    Article  CAS  Google Scholar 

  7. Calkins AL, Yin J, Rangel JL, Landry MR, Fuller AA, Stokes GY (2016) A thermodynamic description of the adsorption of simple water-soluble peptoids to silica. Langmuir 32(44):11690–11697

    Article  CAS  Google Scholar 

  8. Behvandi A, Safekordi AA, Khorasheh F (2017) Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study. J Porous Mater 24(1):165–178

    Article  CAS  Google Scholar 

  9. Yi S, Sun Y, Hu X, Xu H, Gao B, Wu J (2017) Porous nano-cerium oxide wood chip biochar composites for aqueous levofloxacin removal and sorption mechanism insights. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-8342-1

    Google Scholar 

  10. Park HJ, Singhal N, Jho EH (2015) Lithium sorption properties of HMnO in seawater and wastewater. Water Res 87:320–327

    Article  CAS  Google Scholar 

  11. Kadir NNA, Shahadat M, Ismail S (2017) Formulation study for softening of hard water using surfactant modified bentonite adsorbent coating. Appl Clay Sci 137:168–175

    Article  CAS  Google Scholar 

  12. Adamczuk A, Kołodyńska D (2017) Utilization of fly ashes from the coal burning processes to produce effective low-cost sorbents. Energy Fuels 31(2):2095–2105

    Article  CAS  Google Scholar 

  13. Salvestrini S, Leone V, Iovino P, Canzano S, Capasso S (2014) Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms. J Chem Thermodyn 68:310–316

    Article  CAS  Google Scholar 

  14. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276(1):47–52

    Article  CAS  Google Scholar 

  15. Loebenstein WV (1962) Batch adsorption from solution. J Res Natl Bur Stand A 66A(6):503–515

    Article  Google Scholar 

  16. Nygren H, Stenberg M, Karlsson C (1992) Kinetics supramolecular structure and equilibrium properties of fibrinogen adsorption at liquid-solid interfaces. J Biomed Mater Res 26(1):77–91

    Article  CAS  Google Scholar 

  17. Aptel JD, Thomann JM, Voegel JC, Schmitt A, Bres EF (1988) Adsorption of human albumin onto hdroxyapatite. Static and dynamic studies. Colloid Surface 32:159–171

    Article  CAS  Google Scholar 

  18. Salvestrini S (2017) New insights into the interaction mechanism of humic acids with phillipsite. Reac Kinet Mech Cat 120(2):735–752

    Article  CAS  Google Scholar 

  19. de Gennaro B, Fenti A, Salvestrini S (2017) Adsorption of amoxicillin onto organo-modified zeolitic tuff. Adv Sci Lett 23(6):5944–5947

    Article  Google Scholar 

  20. Salvestrini S, Jovanović J, Adnadjević B (2016) Comparison of adsorbent materials for herbicide diuron removal from water. Desalin Water Treat 57(48–49):22868–22877

    Article  CAS  Google Scholar 

  21. Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe. K Sven Vetenskapsakad Handl 24(4):1–39

    Google Scholar 

  22. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  23. Liu Y, Shen L (2008) From Langmuir kinetics to first- and second-order rate equations for adsorption. Langmuir 24(20):11625–11630

    Article  CAS  Google Scholar 

  24. Marczewski AW (2010) Analysis of kinetic langmuir model. Part I: Integrated kinetic langmuir equation (IKL): a new complete analytical solution of the langmuir rate equation. Langmuir 26(19):15229–15238

    Article  CAS  Google Scholar 

  25. Lente G (2015) Deterministic kinetics in chemistry and systems biology. Springer, Berlin. ISBN 978-3-319-15482-4

    Book  Google Scholar 

  26. Banerjee K, Cheremisinoff PN, Cheng SL (1997) Adsorption kinetics of o-xylene by fly ash. Water Res 31(2):249–261

    Article  CAS  Google Scholar 

  27. Yusuf M, Khan MA, Otero M, Abdullah EC, Hosomi M, Terada A, Riya S (2017) Synthesis of CTAB intercalated graphene and its application for the adsorption of AR265 and AO7 dyes from water. J Colloid Interface Sci 493:51–61

    Article  CAS  Google Scholar 

  28. Canzano S, Iovino P, Leone V, Salvestrini S, Capasso S (2012) Use and misuse of sorption kinetic data: a common mistake that should be avoided. Adsorpt Sci Technol 30(3):217–225

    Article  CAS  Google Scholar 

  29. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  30. Briggs GE, Haldane JB (1925) A note on the kinetics of enzyme action. Biochem J 19:338–339

    Article  CAS  Google Scholar 

  31. Schnell S (2013) Validity of the Michaelis-Menten equation—steady-state or reactant stationary assumption: that is the question. FEBS J 281(2):464–472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Salvestrini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvestrini, S. Analysis of the Langmuir rate equation in its differential and integrated form for adsorption processes and a comparison with the pseudo first and pseudo second order models. Reac Kinet Mech Cat 123, 455–472 (2018). https://doi.org/10.1007/s11144-017-1295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1295-7

Keywords

Navigation