Skip to main content
Log in

Influence of TiO2 hydrophilicity on the photocatalytic decomposition of gaseous acetaldehyde in a circulated flow reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The raw titania pulp was heated from 350 up to 700 °C and the impact of TiO2 properties on the photocatalytic decomposition of acetaldehyde under UV–Vis light was investigated. The physico-chemical parameters such as BET surface area, extent of surface hydroxylation, phase composition and size of TiO2 crystallites, were measured. It appeared that low-hydroxylated TiO2 prepared at 400 °C with relatively high BET surface area (106 m2/g) and the crystallized anatase phase was the most active for the acetaldehyde decomposition. High hydroxylation of TiO2 surface and the presence of amorphous TiO2 slowed down the photocatalytic process in the gas phase. On the other hand, high concentration of OH groups on TiO2 surface favored the generation of a high amount of OH radicals in an aqueous environment under UV irradiation. A sufficient amount of hydroxyl groups adsorbed on TiO2 surface is needed to facilitate electron–hole separation and OH radicals formation. On the other hand, an excessive content of these groups results in the creation of a barrier for adsorption of acetaldehyde and thus deteriorates photocatalytic process. Additionally, the high concentration of hydroxyl groups on TiO2 surface could accelerate recombination of radicals and reduce its photocatalytic efficiency in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Rev 1:1–21

    Article  CAS  Google Scholar 

  2. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B 176:396–428

    Article  Google Scholar 

  3. Hodgson AT, Destaillats H, Sullivan DP, Fisk WJ (2007) Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 17:305–316

    Article  CAS  Google Scholar 

  4. Wang XL, Liu LP, Xu HM (2013) Application of photocatalytic concrete paint and its effect of decomposing vehicle exhaust. Adv Mater Res 683:98–105

    Article  CAS  Google Scholar 

  5. Ramirez AM, Demeestere K, Belie ND, Mäntylä T, Levänen E (2010) Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Build Environ 45:832–838

    Article  Google Scholar 

  6. Chen J, Poon C (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44:1899–1906

    Article  Google Scholar 

  7. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1998) Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater 10:135–138

    Article  Google Scholar 

  8. Takeuchi M, Sakamoto K, Martra G et al (2005) Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface. J Phys Chem B 109:15422–15428

    Article  CAS  Google Scholar 

  9. Guan K (2005) Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf Coat Technol 191:155–160

    Article  CAS  Google Scholar 

  10. Batault F, Thevenet F, Hequet V, Rillard C et al (2015) Acetaldehyde and acetic acid adsorption on TiO2 under dry and humid conditions. Chem Eng J 264:197–210

    Article  CAS  Google Scholar 

  11. Jiang Y, Amal R (2013) Selective synthesis of TiO2-based nanoparticles with highly active surface sites for gas-phase photocatalytic oxidation. Appl Catal B 138–139:260–267

    Article  Google Scholar 

  12. Hauchecorne B, Terrens D, Verbruggen S, Martens JA et al (2011) Elucidating the photocatalytic degradation pathway of acetaldehyde: an FTIR in situ study under atmospheric conditions. Appl Catal B 106:630–638

    Article  CAS  Google Scholar 

  13. Carrera R, Vázquez AL, Castillo S, Arce EM (2011) Photocatalytic degradation of acetaldehyde by sol-gel TiO2 nanoparticles: effect of the physicochemical properties on the photocatalytic activity. Mater Sci Forum 691:92–98

    Article  CAS  Google Scholar 

  14. Chakraborty AK, Chai SY, Lee WI (2008) Photocatalytic behavior of WO3/TiO2 in decomposing volatile aldehydes. Bull Korean Chem Soc 29:494–496

    Article  CAS  Google Scholar 

  15. Li D, Haneda H, Hishita S, Ohashi N, Labhsetwar NK (2005) Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J Fluor Chem 126:69–77

    Article  CAS  Google Scholar 

  16. Azziz RA, Sopyan I (2013) Photocatalytic decomposition of acetaldehyde gas on TiO2–SiO2 thin film photocatalyst—a kinetic analysis. Indian J Chem Technol 20:137–144

    Google Scholar 

  17. Stefanov BI, Niklasson GA, Granqvist CG, Österlund L (2016) Gas-phase photocatalytic activity of sputter-deposited anatase TiO2 films: effect of (001) preferential orientation, surface temperature and humidity. J Catal 335:187–196

    Article  CAS  Google Scholar 

  18. Sopyan I (2007) Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2 films. Sci Technol Adv Mater 8:33–39

    Article  CAS  Google Scholar 

  19. Hou H, Miyafuji H, Saka S (2006) Photocatalytic activities and mechanism of the supercritically treated TiO2-activated carbon composites on decomposition of acetaldehyde. J Mater Sci 41:8295–8300

    Article  CAS  Google Scholar 

  20. Bubacz K, Kusiak-Nejman E, Tryba B, Morawski AW (2013) Investigation of OH radicals formation on the surface of TiO2/N photocatalyst at the presence of terephthalic acid solution. Estimation of optimal conditions. J Photochem Photobiol A 261:7–11

    Article  CAS  Google Scholar 

  21. Ohtani B, Ogawa Y, Nishimoto S (1997) Photocatalytic activity of amorphous-anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions. J Phys Chem B 101:3746–3752

    Article  CAS  Google Scholar 

  22. Chesalov YA, Chernobay GB, Andrushkevich TV (2013) FTIR study of the surface complexes of β-picoline, 3-pyridine-carbaldehyde and nicotinic acid on sulfated TiO2 (anatase). J Mol Catal A 373:96–107

    Article  CAS  Google Scholar 

  23. Nagao M, Suda Y (1989) Adsorption of benzene, toluene, and chlorobenzene on titanium dioxide. Langmuir 5:42–47

    Article  CAS  Google Scholar 

  24. Colbeau-Justin C, Kunst M (2003) Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption. J Mater Sci 38:2429–2437

    Article  CAS  Google Scholar 

  25. Pichat P (2010) Some views about indoor air photocatalytic treatment using TiO2: conceptualization of humidity effects, active oxygen species, problem of C1–C3 carbonyl pollutants. Appl Catal B 99:428–434

    Article  CAS  Google Scholar 

  26. Chen CC, Hu SH, Fu YP (2015) Effects of surface hydroxyl group density on the photocatalytic activity of Fe3+-doped TiO2. J Alloy Compd 632:326–334

    Article  CAS  Google Scholar 

  27. Xiong L-B, Li J-L, Yang B, Yu Y (2012) Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater 2012:13. Article ID 831524

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tryba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tryba, B., Tygielska, M., Orlikowski, J. et al. Influence of TiO2 hydrophilicity on the photocatalytic decomposition of gaseous acetaldehyde in a circulated flow reactor. Reac Kinet Mech Cat 119, 349–365 (2016). https://doi.org/10.1007/s11144-016-1030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1030-9

Keywords

Navigation