Skip to main content
Log in

Effects of pretreatment on iron-based catalysts for forming light olefins via Fischer–Tropsch synthesis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The effects of ethylene glycol modified co-precipitation were applied to develop a catalyst with higher activity and selectivity of light olefins in the Fischer–Tropsch synthesis. The catalysts prepared by an ethylene glycol (EG) modified co-precipitation realized smaller and homogeneously distributed catalyst particles as 15–25 nm, which was two times smaller than that of the catalyst prepared from conventional co-precipitation. The Fe/Mn-EG catalyst has higher activity and enhanced selectivity to light olefins, as well as the doubled olefin to paraffin ratio (C =2 –C =4 /C 02 –C 04 ), comparing to un-pretreated catalyst. Furthermore, the addition of magnesium promoter to the Fe/Mn-EG catalyst inhibits the chain growth ability, and enhances the formation of light olefins (C =2 –C =4 ), realizing the high selectivity of light olefins as 50.1 %. The properties of catalyst structure, active phase, reduction and carburization of obtained catalysts were characterized by N2 physisorption, XRD, SEM, XPS, TPR and DRIFTS measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dry ME (2002) Catal Today 71:227

    Article  CAS  Google Scholar 

  2. Zhang QH, Kang JC, Wang Y (2010) ChemCatChem 2:1030

    Article  CAS  Google Scholar 

  3. Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Science 335:835

    Article  Google Scholar 

  4. Jin Y, Datye AK (2000) J Catal 196:8

    Article  CAS  Google Scholar 

  5. Jothimurugesan K, Goodwin JG Jr, Santosh SK, Spivey JJ (2000) Catal Today 58:335

    Article  CAS  Google Scholar 

  6. de Smit E, Weckhuysen BM (2008) Chem Soc Rev 37:2758

    Article  Google Scholar 

  7. Dong HH, Xie MJ, Xu J, Li MF, Peng LM, Guo XF, Ding WP (2011) Chem Commun 47:4019

    Article  CAS  Google Scholar 

  8. Mahajan D, Gütlich P, Stumm U (2003) Catal Commun 4:101

    Article  CAS  Google Scholar 

  9. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197

    Article  CAS  Google Scholar 

  10. Yang J, Sun Y, Tang Y, Liu Y, Wang H, Tian L, Wang H, Zhang Z, Xiang H, Li YW (2006) J Mol Catal A 245:26

    Article  CAS  Google Scholar 

  11. Li TZ, Yang Y, Zhang CH, An X, Wan HJ, Tao ZC, Xiang HW, Li YW, Yi F, Xu BF (2007) Fuel 86:921

    Article  CAS  Google Scholar 

  12. Luo M, Davis BH (2003) Appl Catal A 246:171

    Article  CAS  Google Scholar 

  13. Gallegos NG, Alvarez AM, Cagnoli MV, Bengoa JF, Marchetti SG, Mercader RC, Yeramian AA (1996) J Catal 161:132

    Article  CAS  Google Scholar 

  14. Nakhaeipour A, Shahri SMK, Bozorgzadeh HR, Zamani Y, Tavasoli A, Marvast MA (2008) Appl Catal A 348:201

    Article  CAS  Google Scholar 

  15. Maiti GC, Malessa R, Baerns M (1983) Appl Catal 5:151

    Article  CAS  Google Scholar 

  16. Jaggi NK, Schwartz LH, Butti JB, Papp H, Baerns M (1985) Appl Catal 13:347

    Article  CAS  Google Scholar 

  17. Xu JD, Zhu KT, Weng XF, Weng WZ, Huang CJ, Wan HL (2013) Catal Today 215:86

    Article  CAS  Google Scholar 

  18. Herranz T, Rojas S, Perez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) J Catal 243:199

    Article  CAS  Google Scholar 

  19. Lv X, Chen JF, Tan Y, Zhang Y (2012) Catal Commun 20:6

    Article  CAS  Google Scholar 

  20. Chen JF, Zhang YR, Tan L, Zhang Y (2011) Ind Eng Chem Res 50:4212

    Article  CAS  Google Scholar 

  21. Miyakoshi A, Ueno A, Ichikawa M (2001) Appl Catal A 219:249

    Article  CAS  Google Scholar 

  22. Suo H, Wang S, Zhang C, Xu J, Wu B, Yang Y, Xiang HW, Li YWJ (2012) Catalyst 286:111

    Article  CAS  Google Scholar 

  23. Kaden WE, Wu T, Kunkel WA, Anderson SL (2009) Science 326:826

    Article  CAS  Google Scholar 

  24. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237:405

    Article  CAS  Google Scholar 

  25. Tao Z, Yang Y, Zhang C, Li T, Ding M, Xiang H, Li YWJ (2007) Nat Gas Chem 16:278

    Article  CAS  Google Scholar 

  26. Chen W, Fan ZL, Pan XL, Bao XH (2008) J Am Chem Soc 130:9414

    Article  CAS  Google Scholar 

  27. Yang Y, Xiang H, Tian L, Wang H, Zhang C, Tao Z, Xu Y, Zhong B, Li YW (2005) Appl Catal A 284:105

    Article  CAS  Google Scholar 

  28. Hexana WM, Coville NJ (2010) Appl Catal A 377:150

    Article  CAS  Google Scholar 

  29. Kazansky VB, Zaitsev AV, Borovkov VY, Lapidus AL (1988) Appl Catal 40:17

    Article  Google Scholar 

  30. Wielers AFH, Kock AJHM, Hop CECA, Geus JW, Van Derkraan AM (1989) J Catal 117:1

    Article  CAS  Google Scholar 

  31. Sun X, Zhang X, Zhang Y, Tsubaki N (2010) Appl Catal A 377:134

    Article  CAS  Google Scholar 

  32. Johnston C, Jorgensen N, Rochester CHJ (1988) Chem Soc Faraday Trans 1(84):309

    Article  Google Scholar 

  33. Boellaard E, van der Kraan AM, Geus JW (1996) Appl Catal A 147:207

    Article  CAS  Google Scholar 

  34. Benziger JB, Larson LR (1982) J Catal 77:550

    Article  CAS  Google Scholar 

  35. Bian G, Oonuki A, Koizumi N, Nomoto H, Yamada M (2002) J Mol Catal A 186:203

    Article  CAS  Google Scholar 

  36. Iglesia E, Soled SL, Fiato RA, Via GH (1993) J Catal 143:345

    Article  CAS  Google Scholar 

  37. Jiang M, Koizumi N, Yamada M (2000) J Phys Chem 104:7636

    Article  CAS  Google Scholar 

  38. Riedel T, Schulz H, Schaub G, Jun KW, Hwang JS, Lee KW (2003) Top Catal 26:41

    Article  CAS  Google Scholar 

  39. Zhang Y, Bao J, Nagamori S, Tsubaki N (2009) Appl Catal A 352:277

    Article  CAS  Google Scholar 

  40. Fan L, Yokota K, Fujimoto K (1992) AIChE J 38:1639

    Article  CAS  Google Scholar 

  41. Xu B, Fan Y, Zhang Y, Tsubaki N (2005) AIChE J 51:2068

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (Nos. 91334206 and 51174259), Ministry of Education (NCET-13-0653), National “863” program of China (Nos. 2012AA051001 and 2013AA031702) is greatly appreciated.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, JF. & Zhang, Y. Effects of pretreatment on iron-based catalysts for forming light olefins via Fischer–Tropsch synthesis. Reac Kinet Mech Cat 114, 433–449 (2015). https://doi.org/10.1007/s11144-014-0821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0821-0

Keywords

Navigation