Skip to main content
Log in

Preparation of zirconium carbonate as water-tolerant solid base catalyst for glucose isomerization and one-pot synthesis of levulinic acid with solid acid catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this research, zirconium compounds were prepared as water-tolerant solid base catalysts by a simple method. Their catalytic activities were investigated in the aqueous glucose–fructose isomerization reaction. The zirconium carbonate (ZrC) catalyst could work in wide range of reaction temperature (80–140 °C) and the maximum glucose conversion reached 45 % at 120 °C with 76 % selectivity to fructose. The ZrC catalyst was found to retain its activity without significant decrease in the fructose yield after being used for five times. In the one-pot transformation of glucose to levulinic acid (LA), the ZrC could afford 17 % yield of LA after 12 h reaction in water–toluene biphasic solvents in combination with a solid acid catalyst, Amberlyst-15. The proposed reaction system in water–toluene biphasic solvents occurred faster and gave higher LA yield than that in pure water solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

Notes

  1. The use of water/toluene biphasic solvent accelerated acid-catalyzed reactions since fructose yield in the initial 20 min did not change in both solvents (pure water and water/toluene). In biphasic solvent system, catalysts and sugars were distributed in water phase, while formed HMF moved into toluene phase. These phenomena pushed dehydration reaction of fructose in water phase to shift toward HMF formation [44, 45]. The utilization of pure organic solvents for transform of sugars to LA is not necessary to be investigated because the rehydration of HMF to LA is prohibited in the absence of water.

References

  1. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  2. Zakrzewska ME, Lukasik EB, Lukasik RB (2011) Chem Rev 111:397

    Article  CAS  Google Scholar 

  3. Escobar JC, Lora ES, Venturini OJ, Yanez EE, Castillo EF, Almazan O (2009) Renew Sustain Energy Rev 13:1275

    Article  CAS  Google Scholar 

  4. Sanders JPM, Clark JH, Harmsen GJ, Heeres HJ, Heijnen JJ, Kersten SRA, van Swaaij WPM, Moulijn JA (2012) Chem Eng Process 51:117

    Article  CAS  Google Scholar 

  5. Tong X, Ma Y, Li Y (2010) Appl Catal A Gen 385:1

    Article  CAS  Google Scholar 

  6. Ruiz JCS, Pineda A, Balu AM, Luque R, Campelo JM, Romero AA, Fernandez JMR (2012) Catal Today 195:162

    Article  Google Scholar 

  7. Takagaki A, Ohara M, Nishimura S, Ebitani K (2009) Chem Commun 6276. doi:10.1039/b914087e

  8. Ohara M, Takagaki A, Nishimura S, Ebitani K (2010) Appl Catal A Gen 383:149

    Article  CAS  Google Scholar 

  9. Beckerle K, Okuda J (2012) J Mol Catal A Chem 356:158

    Article  CAS  Google Scholar 

  10. Jow J, Rorrer GL, Hawley MC, Lamport DTA (1987) Biomass 14:185

    Article  CAS  Google Scholar 

  11. Zeng W, Cheng D, Zhang H, Chen F, Zhan X (2010) React Kinet Mech Catal 100:377

    CAS  Google Scholar 

  12. Son PA, Nishimura S, Ebitani K (2012) React Kinet Mech Catal 106:185

    Article  CAS  Google Scholar 

  13. Tewari YB (1990) Appl Biochem Biotech 23:187

    Article  CAS  Google Scholar 

  14. Bhosale SH, Rao MB, Deshpande VV (1996) Microbiol Rev 60:280

    CAS  Google Scholar 

  15. Zhang Y, Hidajat K, Ray AK (2004) Biochem Eng J 21:111

    Article  Google Scholar 

  16. Kooyman C, Vellenga K, deWilt HGJ (1977) Carbohydr Res 54:33

    Article  CAS  Google Scholar 

  17. Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H (2005) Carbohydr Res 340:1925

    Article  CAS  Google Scholar 

  18. Yang BY, Montgomery R (1996) Carbohydr Res 280:27

    Article  CAS  Google Scholar 

  19. deWit G, Kieboom APG, van Bekkum H (1979) Carbohydr Res 74:157

    Article  CAS  Google Scholar 

  20. Rendleman JA, Hodge JE (1975) Carbohydr Res 44:155

    Article  CAS  Google Scholar 

  21. Rendleman JA, Hodge JE (1979) Carbohydr Res 75:83

    Article  CAS  Google Scholar 

  22. Moreau C, Durand R, Roux A, Tichit D (2000) Appl Catal A Gen 193:257

    Article  CAS  Google Scholar 

  23. Lecomte J, Finiels A, Moreau C (2002) Starch/Starke 54:75

    Article  CAS  Google Scholar 

  24. Yu S, Kim E, Park S, Song IK, Jung JC (2012) Catal Commun 29:63

    Article  CAS  Google Scholar 

  25. Watanabe M, Aizawa Y, Iida T, Nishimura R, Inomata H (2005) Appl Catal A Gen 295:150

    Article  CAS  Google Scholar 

  26. Kanie Y, Akiyama K, Iwamoto M (2011) Catal Today 178:63

    Article  Google Scholar 

  27. Román-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Angew Chem Int Ed 49:8954

    Article  Google Scholar 

  28. Moliner M, Román-Leshkov Y, Davis ME (2010) PNAS 107:6164

    Article  CAS  Google Scholar 

  29. Lima S, Dias AS, Lin Z, Brandao P, Ferreira P, Pillinger M, Rocha J, Casilda VC, Valente AA (2008) Appl Catal A Gen 339:21

    Article  CAS  Google Scholar 

  30. Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) ACS Catal 1:408

    Article  CAS  Google Scholar 

  31. Pagán-Torres Y, Wang T, Gallo JMR, Shanks BH, Dumesic JA (2012) ACS Catal 2:930

    Article  Google Scholar 

  32. Schraufnagel RA, Rase HF (1975) Ind Eng Chem Prod Res Dev 14:40

    Article  CAS  Google Scholar 

  33. Jow J, Rorrer GL, Hawley MC (1987) Biomass 14:185

    Article  CAS  Google Scholar 

  34. Girisuta B, Janssen LPBM, Heeres HJ (2006) Chem Eng Res Des 84:339

    Article  CAS  Google Scholar 

  35. Hegner J, Pereira KC, deBoef B, Lucht BL (2010) Tetrahedron Lett 51:2356

    Article  CAS  Google Scholar 

  36. Zhang J, Wu S, Zhang H, Li B (2012) Bio Res 7:3984

    Google Scholar 

  37. Chidambaram M, Venkatesan C, Rajamohanan PR, Singh AP (2003) Appl Catal A Gen 244:27

    Article  CAS  Google Scholar 

  38. Tao Q, Reddyb BJ, He H, Frost RL, Yuana P, Zhua J (2008) Mater Chem Phys 112:869

    Article  CAS  Google Scholar 

  39. Sinhamahapatra A, Sutradhar N, Roy B, Pal P, Bajaj HC, Panda AB (2011) Appl Catal B Environ 103:378

    Article  CAS  Google Scholar 

  40. Sinhamahapatra A, Sutradhar N, Roy B, Tarafdar A, Bajaj HC, Panda AB (2010) Appl Catal A Gen 385:22

    Article  CAS  Google Scholar 

  41. Nielsen RH, Wilfing G (2000) Zirconium, zirconium compounds. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany

  42. Horvat J, Klaie B, Metelko B, Sunjic V (1985) Tetrahedron Lett 26:2111

    Article  CAS  Google Scholar 

  43. Deng L, Li J, Lai DM, Fu Y, Guo QX (2009) Angew Chem Int Ed 48:6529

    Article  CAS  Google Scholar 

  44. Gurbuz EI, Wettstein SG, Dumesic JA (2012) ChemSusChem 5:383

    Article  Google Scholar 

  45. Wettstein SG, Alonso DM, Chong Y, Dumesic JA (2012) Energy Environ Sci 5:8199

    Article  CAS  Google Scholar 

  46. Vogel AI (1956) Practical organic chemistry, 3rd edn. Longman, London

    Google Scholar 

  47. Morgan SO, Yager WA (1940) Ind Eng Chem 32:15

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Grant-in-Aid for Scientific Research (C) (No. 22560764) by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. P.A. Son is thankful to 322 Project of Ministry of Education and Training (MOET) from Vietnam Government for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohki Ebitani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, P.A., Nishimura, S. & Ebitani, K. Preparation of zirconium carbonate as water-tolerant solid base catalyst for glucose isomerization and one-pot synthesis of levulinic acid with solid acid catalyst. Reac Kinet Mech Cat 111, 183–197 (2014). https://doi.org/10.1007/s11144-013-0642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0642-6

Keywords

Navigation