Skip to main content
Log in

Enhanced photocatalytic activity by the tunnel effect of microstructured InVO4/WO3 heterojunctions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Microstructured InVO4/WO3 heterojunctions were fabricated by a facile hydrothermal method and investigated in the photocatalytic degradation of rhodamine B (Rh.B) under simulated solar light. Embedding InVO4 into microhollow WO3 demonstrated efficient charge separation at the interface in essence. An interesting synergetic effect between InVO4 and WO3 led to an improved photocatalytic performance. However, the dropping of photoelectrochemical properties was tentatively deduced in the mechanism of charge recombination between electrons generated from WO3 and holes from InVO4. The tunnel effect has promoted the formation of electron/hole pairs with high redox potentials. However, it reduced the number of electrons to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim J, Lee CW, Choi W (2010) Environ Sci Technol 44:6845–6849

    Google Scholar 

  2. Su JZ, Feng XJ, Sloppy JD, Guo LJ, Grimes CA (2011) Nano Lett 11:203–208

    Article  CAS  Google Scholar 

  3. Guo YF, Quan X, Lu N, Zhao HM, Chen S (2007) Environ Sci Technol 41:4422–4427

    Article  CAS  Google Scholar 

  4. Abe R, Takami H, Murakami N, Ohtani B (2008) J Am Chem Soc 130:7780–7781

    Article  CAS  Google Scholar 

  5. Akhavan O, Choobtashani M, Ghaderi E (2012) J Phys Chem C 116:9653–9659

    Article  CAS  Google Scholar 

  6. Ikeda S, Sugiyama N, Murakami S, Kominami H, Kera Y, Noguchi H, Uosaki K, Torimoto T, Ohtani B (2003) Phys Chem Chem Phys 5:778–783

    Article  CAS  Google Scholar 

  7. Ohtani B, Nishimoto SI (1993) J Phys Chem 97:920–926

    Article  CAS  Google Scholar 

  8. Bamwenda GR, Arakawa H (2001) Appl Catal A Gen 210:181–191

    Article  CAS  Google Scholar 

  9. Kudo A (2007) Pure Appl Chem 79:1917–1927

    Article  CAS  Google Scholar 

  10. Hong SJ, Lee S, Jang JS, Lee JS (2011) Energy Environ Sci 4:1781–1787

    Article  CAS  Google Scholar 

  11. Ashokkumar M, Maruthamuthu P (1991) Int J Hydrogen Energy 16:591–595

    Article  CAS  Google Scholar 

  12. Smith W, Wolcott A, Fitzmorris RC, Zhang JZ, Zhao YP (2011) J Mater Chem 21:10792–10800

    Article  CAS  Google Scholar 

  13. Liu ZF, Miyauchi M (2009) Chem Commun 15:2002–2004

    Article  Google Scholar 

  14. Higashi M, Abe R, Takata T, Domen K (2009) Chem Mater 21:1543–1549

    Article  CAS  Google Scholar 

  15. Bojinova A, Dushkin C (2011) Reac Kinet Mech Cat 103:239–250

    Article  CAS  Google Scholar 

  16. Min YL, Zhang K, Chen YC, Zhang YG (2012) Ultrason Sonochem 19:883–889

    Article  CAS  Google Scholar 

  17. Liu EK, Zhu BS, Luo JS (2003) Semiconductor physics. Publishing House of Electronics Industry, Beijing, p 216

    Google Scholar 

  18. Butcher DP, Gewirth AA (2010) Chem Mater 22:2555–2562

    Article  CAS  Google Scholar 

  19. Zhang LW, Fu HB, Zhang C, Zhu YF (2006) J Solid State Chem 179:804–811

    Article  CAS  Google Scholar 

  20. Ai ZH, Zhang LZ, Lee SC (2010) J Phys Chem C 114:18594–18600

    Article  CAS  Google Scholar 

  21. Min YL, Zhang K, Chen YC, Zhang YG (2011) Chem Eng J 175:76–83

    Article  CAS  Google Scholar 

  22. Min YL, Zhang K, Chen YC, Zhang YG, Zhao W (2012) Sep Purif Technol 92:115–120

    Article  CAS  Google Scholar 

  23. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  24. Zhang XH, Lu XH, Shen YQ, Han JB, Yuan LY, Gong L, Xu Z, Bai XD, Wei M, Tong YX, Gao YH, Chen J, Zhou J, Wang ZL (2011) Chem Commun 47:5804–5806

    Article  CAS  Google Scholar 

  25. Yang SG, Quan X, Li XY, Liu YZ, Chen S, Chen GH (2004) Phys Chem Chem Phys 6:659–664

    CAS  Google Scholar 

  26. Wang YJ, Shi R, Lin J, Zhu YF (2011) Energy Environ Sci 4:2922–2929

    Article  CAS  Google Scholar 

  27. Zhou XS, Peng F, Wang HJ, Yua H, Fang YP (2011) Chem Commun 47:10323–10325

    Article  CAS  Google Scholar 

  28. Song P, Zhang XY, Sun MX, Cui XL, Lin YH (2012) Nanoscale 4:1800–1804

    Article  CAS  Google Scholar 

  29. Ye AH, Fan WQ, Zhang QH, Deng WP, Wang Y (2012) Catal Sci Technol 2:969–978

    Google Scholar 

  30. Yu JG, Ma TT, Liu SW (2011) Phys Chem Chem Phys 13:3491–3501

    Article  CAS  Google Scholar 

  31. Kronawitter CX, Vayssieres L, Shen SH, Guo LJ, Wheeler DA, Zhang JZ, Antoun BR, Mao SS (2011) Energy Environ Sci 4:3889–3899

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank for financial supports from National Science and Technology Support Project (Grant No. 2011BAJ03B04), and the Doctor Foundation (2011), Open Foundation of Building Energy-saving Institute (Grant No. 2012-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengjun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Zhao, W. & Zhang, K. Enhanced photocatalytic activity by the tunnel effect of microstructured InVO4/WO3 heterojunctions. Reac Kinet Mech Cat 108, 253–261 (2013). https://doi.org/10.1007/s11144-012-0490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0490-9

Keywords

Navigation