Skip to main content
Log in

Isokinetic behavior in the gas phase hydrogenation of nitroarenes over Au/TiO2: application of the selective energy transfer model

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The gas phase selective hydrogenation of a series of nitroarenes (nitrobenzene, p-chloronitrobenzene, p-bromonitrobenzene, p-nitroaniline, p-nitrotoluene, p-nitrophenol and p-nitroanisole) has been examined over Au/TiO2 (0.3 % w/w Au, mean Au particle size = 3.9 nm). Compensation behavior is demonstrated with an associated isokinetic temperature (T iso) of 558 ± 32 K. We account for this response in terms of the selective energy transfer (SET) model where the occurrence of resonance between catalyst and reactant vibrations generates the activated complex. An analysis of the stepwise variation of the activation energies has identified a critical vibrational frequency of 853 cm−1, which is close (±2 cm−1) to the reference value for nitro-group (in-plane symmetric O–N–O bending and stretching) vibrations. Application of SET suggests activation of weakly adsorbed nitroarene (at the support or metal/support interface) by excitation of the nitro-group via IR radiation from a strongly adsorbed surface nitroarene component. The excited nitroarene is then attacked by reactive hydrogen supplied by the Au sites to generate the respective aromatic amine with 100 % selectivity. Agreement of the SET predicted T iso with the experimental value requires the incorporation of a term due to C–N torsional entropy resulting from distortion of the O–N–O plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Galwey AK (1977) Compensation effect in heterogeneous catalysis. Adv Catal 26:247–322

    Article  CAS  Google Scholar 

  2. Bond GC, Keane MA, Kral H, Lercher JA (2000) Compensation phenomena in heterogeneous catalysis: general principles and a possible explanation. Catal Rev Sci Eng 42:323–383

    Article  CAS  Google Scholar 

  3. Liu L, Guo Q-X (2001) Isokinetic relationship, isoequilibrium relationship, and enthalpy–entropy compensation. Chem Rev 101:673–696

    Article  CAS  Google Scholar 

  4. Linert W, Jameson RF (1989) The isokinetic relationship. Chem Soc Rev 18:477–505

    Article  CAS  Google Scholar 

  5. Keane MA, Larsson R (2006) Isokinetic behaviour in gas phase catalytic haloarene hydrodehalogenation reactions: mechanistic considerations. J Mol Catal A 249:158–165

    Article  CAS  Google Scholar 

  6. Keane MA, Larsson R (2009) Application of the selective energy transfer model to account for an isokinetic response in the gas phase reductive cleavage of hydroxyl, carbonyl and carboxyl groups from benzene over nickel/silica. Catal Lett 129:93–103

    Article  CAS  Google Scholar 

  7. Keane MA, Larsson R (2007) Isokinetic behaviour in gas phase catalytic hydrodechlorination of chlorobenzene over supported nickel. J Mol Catal A 268:87–94

    Article  CAS  Google Scholar 

  8. Keane MA, Larsson R (2008) On the stepwise change of activation energies in the hydrodechlorination of chlorobenzene over supported nickel. Catal Commun 9:333–336

    Article  CAS  Google Scholar 

  9. Larsson R (1989) A model of selective energy transfer at the active site of the catalyst. J Mol Catal 55:70–83

    Article  CAS  Google Scholar 

  10. Konnecker G, Boehncke A, Schmidt S (2003) Ecotoxicological assessment of p-chloroaniline—fate and effects in aquatic systems. Fresenius Environ Bull 12:589–593

    Google Scholar 

  11. Boehnecke A, Kielhorn J, Konnecker G, Pohlenz-Michel C, Mangelsdorf I (2003) 4-Chloroaniline. CICADS Report 48, WHO, Geneva

  12. Smirnov YD, Fedorova LA, Tomilov AP (1997) Improvement of the electrochemical synthesis of p-chloroaniline. Russ J Electrochem 33:1168–1170

    CAS  Google Scholar 

  13. Westerterp KR, van Gelder KB, Janssen HJ, Oyevaar MH (1988) Developments of catalytic hydrogenation reactors for the fine chemical industry. Chem Eng Sci 43:2229–2236

    Article  CAS  Google Scholar 

  14. Cardenas-Lizana F, Gomez-Quero S, Keane MA (2008) Clean production of chloroanilines by selective gas phase hydrogenation over supported Ni catalysts. Appl Catal A 334:199–206

    Article  CAS  Google Scholar 

  15. Harsy SG (1990) Homogeneous hydrogenation of nitroaliphatic compounds catalyzed by group VIII transition metal phosphine complexes. Tetrahedron 46:7403–7412

    Article  CAS  Google Scholar 

  16. Zheng Y, Ma K, Wang H, Sun X, Jiang J, Wang C, Li R, Ma J (2008) A green reduction of aromatic nitro compounds to aromatic amines over a novel Ni/SiO2 catalyst passivated with a gas mixture. Catal Lett 124:268–276

    Article  CAS  Google Scholar 

  17. Cárdenas-Lizana F, Gómez-Quero S, Keane MA (2008) Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al2O3. Catal Commun 9:475–481

    Article  Google Scholar 

  18. Vishwanathan V, Jayasri V, Basha PM, Mahata N, Sikhwivhilu LM, Coville NJ (2008) Gas phase hydrogenation of ortho-chloronitrobenzene (O-CNB) to ortho-chloroaniline (O-CAN) over unpromoted and alkali metal promoted-alumina supported palladium catalysts. Catal Commun 9:453–458

    Article  CAS  Google Scholar 

  19. Wang XD, Liang MH, Zhang JL, Wang Y (2007) Selective hydrogenation of aromatic chloronitro compounds. Curr Org Chem 11:299–314

    Article  CAS  Google Scholar 

  20. Coq B, Figuéras F (1998) Structure-activity relationships in catalysis by metals: some aspects of particle size, bimetallic and supports effects. Coord Chem Rev 178–180:1753–1783

    Article  Google Scholar 

  21. Cárdenas-Lizana F, Gómez-Quero S, Keane MA (2008) Exclusive production of chloroaniline from chloronitrobenzene over Au/TiO2 and Au/Al2O3. ChemSusChem 1:215–221

    Article  Google Scholar 

  22. Cárdenas-Lizana F, Gómez-Quero S, Perret N, Keane MA (2009) Support effects in the selective gas phase hydrogenation of p-chloronitrobenzene over gold. Gold Bull 42:124–132

    Article  Google Scholar 

  23. Cárdenas-Lizana F, Gómez-Quero S, Hugon A, Delannoy L, Louis C, Keane MA (2009) Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au. J Catal 262:235–243

    Article  Google Scholar 

  24. Cárdenas-Lizana F, Gómez-Quero S, Perret N, Keane MA (2011) Gold catalysis at the gas-solid interface: role of the support in determining activity and selectivity in the hydrogenation of m-dinitrobenzene. Catal Sci Technol 1:652–661

    Article  Google Scholar 

  25. Cárdenas-Lizana F, Gómez-Quero S, Kiwi-Minsker L, Keane MA (2012) Gold nano-particles supported on hematite and magnetite as highly selective catalysts for the hydrogenation of nitro-aromatics. Int J Nanotechnol 9:92–113

    Article  Google Scholar 

  26. Fu X, Clark LA, Yang Q, Anderson MA (1996) Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ Sci Technol 30:647–653

    Article  CAS  Google Scholar 

  27. Tavoularis G, Keane MA (1999) The gas phase hydrodechlorination of chlorobenzene over nickel/silica. J Chem Technol Biotechnol 74:60–70

    Article  CAS  Google Scholar 

  28. Yuan G, Keane MA (2003) Liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over carbon supported palladium: an evaluation of transport limitations. Chem Eng Sci 58:257–267

    Article  CAS  Google Scholar 

  29. Haller GL, Resasco DE (1989) Metal support interactions—group VIII metals and reducible oxides. Adv Catal 36:173–235

    Article  CAS  Google Scholar 

  30. Sekiya T, Yagisawa T, Kurita S (2001) Annealing of anatase titanium dioxide under hydrogen atmosphere. J Ceram Soc Jpn 109:672–675

    Article  CAS  Google Scholar 

  31. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6:102–115

    Article  CAS  Google Scholar 

  32. Blaser H-U, Steiner H, Studer M (2009) Selective catalytic hydrogenation of functionalized nitroarenes: an update. ChemCatChem 1:210–221

    Article  CAS  Google Scholar 

  33. Li C-H, Yu Z-X, Yao K-F, Jib S-F, Liang J (2005) Nitrobenzene hydrogenation with carbon nanotube-supported platinum catalyst under mild conditions. J Mol Catal A 226:101–105

    Article  CAS  Google Scholar 

  34. Zhao F, Ikushima Y, Arai M (2004) Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: effects of pressure, solvent, and metal particle size. J Catal 224:479–483

    Article  CAS  Google Scholar 

  35. Ragaini F, Cenini S, Gasperini M (2001) Reduction of nitrobenzene to aniline by CO/H2O, catalysed by Ru-3(CO)(12)/chelating diimines. J Mol Catal A 174:51–57

    Article  CAS  Google Scholar 

  36. Pérez MM, Martínez de Lecea S, Solano AL (1997) Platinum supported on activated carbon cloths as catalyst for nitrobenzene hydrogenation. Appl Catal 151:461–475

    Article  Google Scholar 

  37. Jiménez-González C, Poechlauer P, Broxterman QB, Yang B-S, Ende DA, Baird J, Bertsch C, Hannah RE, Dell’Orco P, Noorrnan H, Yee S, Reintjens R, Wells A, Massonneau V, Manley J (2011) Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemical manufacturers. J Org Proc Res Dev 15:900–911

    Google Scholar 

  38. Shlyapochnikov V-A, Khaikin LS, Grikina OE, Bock CW, Vilkov LV (1994) The structure of nitrobenzene and the interpretation of the vibrational frequencies of the NO2 moiety on the basis of ab initio calculations. J Mol Struct 326:1–16

    Article  CAS  Google Scholar 

  39. Clarkson J, Smith WE (2003) A DFT analysis of the vibrational spectra of nitrobenzene. J Mol Struct 655:413–422

    Article  CAS  Google Scholar 

  40. Muralidhar Rao P, Rao GR (1989) Vibrational spectra and normal coordinate analysis of monohalogenated nitrobenzenes. J Raman Spectrosc 20:529–540

    Article  Google Scholar 

  41. Green JHS, Harrison DJ (1970) Vibrational spectra of benzene derivatives 10: monosubstituted nitrobenzenes. Spectrochim Acta A 26A:1925–1932

    Article  Google Scholar 

  42. Kavitha E, Sundaraganesan N, Sebastian S (2010) Molecular structure, vibrational spectroscopic and HOMO-LUMO studies of 4-nitroaniline by density functional method. Ind J Pure Appl Phys 48:20–30

    CAS  Google Scholar 

  43. Spectrum ID NIDA423, Integrated spectral database system of organic compounds, National Institute of Advanced Industrial Science and Technology, Tsukuba

  44. Kishore Y, Sharma SN, Dwivedi CPD (1974) Infrared absorption spectra of o-nitrophenols, m-nitrophenols and p-nitrophenols. Ind J Phys 48:412–414

    CAS  Google Scholar 

  45. Kovacs A, Izvekov V, Keresztury G, Pongor G (1998) Vibrational analysis of 2-nitrophenol. A joint FT-IR, FT-Raman and scaled quantum mechanical study. Chem Phys 238:231–243

    Article  CAS  Google Scholar 

  46. Krishnakumar V, Prabavath N (2009) Simulation of IR and Raman spectra of p-hydroxyanisole and p-nitroanisole based on scaled DFT force fields and their vibrational assignments. Spectrochim Acta A 74:154–161

    Article  CAS  Google Scholar 

  47. Grujic-Brojcin MJ, Scepanovic Z, Dohcevic-Mitovic D, Hionic I, Matovic B, Styanisic G, Popovic ZV (2005) Infrared study of laser synthesized anatase TiO2 nanopowders. J Phys D 38:1415–1420

    Article  CAS  Google Scholar 

  48. Eagles M (1964) Polar modes of lattice vibration and polaron coupling constants in rutile (TiO2). J Phys Chem Solids 25:1243–1251

    Article  CAS  Google Scholar 

  49. Taylor JG, Smith HG, Nicklow RM, Wilkinsson MK (1971) Lattice dynamics of rutile. Phys Rev B 3:3457–3472

    Article  Google Scholar 

  50. Corma A, Concepcion P, Serna P (2007) A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew Chem Int Ed 46:7266–7269

    Article  CAS  Google Scholar 

  51. Boronet M, Concepcion P, Corma A, Gonzalez S, Illas F, Serna P (2007) A molecular mechanism for chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. J Am Chem Soc 129:16230–16237

    Article  Google Scholar 

  52. Syomin D, Wang J, Koel BE (2001) Monolayer and multilayer films of nitrobenzene on Au(111) surfaces: bonding and geometry. Surf Sci Lett 495:L827

    Article  CAS  Google Scholar 

  53. Claus P (2005) Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A 291:222–229

    Article  CAS  Google Scholar 

  54. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  55. Bus E, Miller JT, van Bokhoven JA (2005) Hydrogen chemisorption on Al2O3-supported gold catalysts. J Phys Chem B 109:14581–14587

    Article  CAS  Google Scholar 

  56. Boronat M, Illas F, Corma A (2009) Active sites for H2 adsorption activation in Au/TiO2 and the role of the support. J Phys Chem 113:3750–3757

    Article  CAS  Google Scholar 

  57. Zanella R, Louis C, Giorgio S, Touroude R (2004) Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism. J Catal 223:328–339

    Article  CAS  Google Scholar 

  58. Mohr C, Hofmeister H, Claus P (2003) The influence of real structure of gold catalysts in the partial hydrogenation of acrolein. J Catal 213:86–94

    Article  CAS  Google Scholar 

  59. Cárdenas-Lizana F, Gómez-Quero S, de Pedro ZM, Keane MA (2010) Gas phase hydrogenation of nitroarenes: a comparison of the catalytic action of titania supported gold and silver. J Mol Catal A 326:48–54

    Article  Google Scholar 

  60. Svensson K, Bellman J, Hellman A, Andersson S (2005) Dipole active rotations of physisorbed H2 and D2. Phys Rev B 71:245402

    Article  Google Scholar 

  61. Bellman J, Svensson K, Andersson S (2006) Molecular hydrogen adsorption at surface adatoms. J Chem Phys 125:064704

    Article  CAS  Google Scholar 

  62. Larsson R, Jamroz MH, Borowiak MA (1998) On the catalytic decomposition of formic acid. I. The activation energies for oxide catalysis. J Mol Catal A 129:41–51

    Article  CAS  Google Scholar 

  63. Larsson R (1989) On the catalytic decomposition of nitrous oxide over metal oxides. Catal Today 4:235–251

    Article  CAS  Google Scholar 

  64. Herzberg G (1950) Spectra of diatomic molecules, 2nd edn. Van Nostrand, New York

    Google Scholar 

  65. Herzberg G (1945) Infrared and Raman spectra of polyatomic molecules. Van Nostrand, New York

    Google Scholar 

  66. Kiat J-M, Beldirazzi G, Dunlop M, Malibert C, Dkhil B, Menoret C, Masson O, Fernandez-Diaz MT (2000) Anharmonicity and disorder in simple and complex perovskites: a high energy synchrotron and hot neutron diffraction study. J Phys Condens Matter 12:8411–8426

    Article  CAS  Google Scholar 

  67. Ravindren TR, Sivasubramanian V, Arora AK (2005) Low temperature Raman spectroscopic study of scandium molybdate. J Phys Condens Matter 17:277–286

    Article  Google Scholar 

  68. Hardwick JL, Brand JCD (1976) Anharmonic potential constants and large amplitude bending vibration in nitrogen dioxide. Can J Phys 54:80–91

    Article  CAS  Google Scholar 

  69. Bratlie KM, Li Y, Larsson R, Somorjai GA (2008) Compensation effect of benzene hydrogenation on Pt(111) and Pt(100) analyzed by the selective energy transfer model. Catal Lett 121:173–178

    Article  CAS  Google Scholar 

  70. Glasstone S (1946) Textbook of physical chemistry, 2nd edn. Van Nostrand, New York

    Google Scholar 

  71. Lewis GN, Randall M, Pitzer KS, Brewer L (1961) Thermodynamics, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  72. Ercolani G (1999) Comment on “using a convenient, quantitative model for torsional entropy to establish qualitative trends for molecular processes that restrict conformational freedom”. J Org Chem 86:3350–3353

    Article  Google Scholar 

  73. Makaryan IA, Savchenko VI (1993) N-Arylhydroxylamines transformation in the presence of heterogeneous catalysts. Stud Surf Sci Catal 75:2439–2442

    Article  CAS  Google Scholar 

  74. Siegrist U, Baumeister P, Blaser H-U (1998) The selective hydrogenation of functionalized nitroarenes: new catalytic systems. Chem Ind 75:207–219

    CAS  Google Scholar 

  75. Spectrum ID NIDA34841, Integrated spectral database system of organic compounds, National Institute of Advanced Industrial Science and Technology, Tsukuba

Download references

Acknowledgments

We note the contribution of Dr. F. Cárdenas-Lizana and X. Wang to this work. EPSRC support for free access to the TEM/SEM facility at the University of St Andrews is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Keane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keane, M.A., Larsson, R. Isokinetic behavior in the gas phase hydrogenation of nitroarenes over Au/TiO2: application of the selective energy transfer model. Reac Kinet Mech Cat 106, 267–288 (2012). https://doi.org/10.1007/s11144-012-0440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0440-6

Keywords

Navigation