Skip to main content
Log in

Application of heterogenous catalyst of tris(1,10)-phenanthroline iron(II) loaded on zeolite for the photo-Fenton degradation of methylene blue

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A heterogeneous photo-Fenton catalyst was prepared using the complex tris(1,10)-phenanthroline iron(II) loaded on the NaY type of zeolite. The catalyst displayed a feature of the photo-Fenton degradation of methylene blue, and a linear relationship between ln(C0/Ct) and reaction time was obtained, indicating the kinetic characteristics of a pseudo first-order reaction. The repeated cyclic experiments showed that the heterogeneous catalyst was stable and recoverable. Compared with the traditional homogeneous Fenton reagent, the heterogeneous catalyst has the advantage in the neutral or weakly basic medium used because the active component tris(1,10)-phenanthroline iron(II) is a stable chelate compound. The photo-Fenton degradation pathway for methylene blue was given based on the mass spectral data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

Abbreviations

MB:

Methylene blue

C0 :

The initial concentration

Ct :

The concentration at the reaction time t

kapp :

Apparent reaction rate constant

R:

Correlation coefficient

t:

Reaction time or irradiation time

ti :

Induction time

References

  1. Herrera F, Kiwi J, Lopez A, Nadtochenko V (1999) Photochemical decoloration of remazol brilliant blue and uniblue A in the presence of Fe3+ and H2O2. Environ Sci Technol 33:3145–3151

    Article  CAS  Google Scholar 

  2. Chen J, Zhu L (2007) UV-Fenton discolouration and mineralization of Orange II over hydroxyl-Fe-pillared bentonite. J Photochem Photobiol A 188:56–64

    Article  CAS  Google Scholar 

  3. Muruganandham M, Swaminathan M (2004) Photochemical oxidation of reactive azo dye with UV–H2O2 process. Dyes Pigm 62:269–275

    Article  CAS  Google Scholar 

  4. Follansbee DM, Paccione JD, Martin LL (2008) Globally optimal design and operation of a continuous photocatalytic advanced oxidation process featuring moving bed adsorption and draft-tube transport. Ind Eng Chem Res 47:3591–3600

    Article  CAS  Google Scholar 

  5. Orozcoa SL, Bandala ER, Arancibia-Bulnes CA, Serrano B, Suárez-Parra R, Hernández-Pérez I (2008) Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photo-assisted Fe(II)/H2O2 and Fe(III)/H2O2 systems. J Photochem Photobiol A 198:144–149

    Article  Google Scholar 

  6. Zhao Y, Hu J (2008) Photo-Fenton degradation of 17β-estradiol in presence of α-FeOOHR and H2O2. Appl Catal B 78:250–258

    Article  CAS  Google Scholar 

  7. Ansari A, Peral J, Domènech X, Rodríguez-Clemente R, Casado J (1996) Oxidation of S(IV) to S(VI) under Fenton, photo-Fenton and γ-FeOOH photocatalized conditions. J Mol Catal A 112:269–276

    Article  CAS  Google Scholar 

  8. Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater B 98:33–50

    Article  CAS  Google Scholar 

  9. Masomboon N, Ratanatamskul C, Lu MC (2009) Chemical oxidation of 2, 6-dimethylaniline in the Fenton process. Environ Sci Technol 43:8629–8634

    Article  CAS  Google Scholar 

  10. Zepp RG, Faust BC, Hoigné J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iroin (II) with hydrogen peroxide: the photo-fenton reaction. J Environ Sci Technol 26:313–319

    Article  CAS  Google Scholar 

  11. Liu SQ, Cheng S, Feng LR, Wang XM, Chen ZG (2010) Effect of alkali cations on heterogeneous photo-Fenton process mediated by Prussian blue colloids. J Hazard Mater 182:665–671

    Article  CAS  Google Scholar 

  12. Benkelberg HJ, Warneck P (1995) Photodecomposition of Iron(III) hydroxo and sulfato complexes in aqueous solution: wavelength dependence of OH and SO4 2− quantum yields. J Phys Chem 99:5214–5221

    Article  CAS  Google Scholar 

  13. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    Article  CAS  Google Scholar 

  14. Walling C, Kato S (1971) The oxidation of alcohols by Fenton’s reagent: the effect of copper ion. J Am Chem Soc 93:4275–4281

    Article  CAS  Google Scholar 

  15. Lin SH, Lo CC (1997) Fenton process for treatment of desizing wastewater. Wat Res 31:2050–2056

    Article  CAS  Google Scholar 

  16. Kremer ML (2003) The Fenton reaction. Dependence of the rate on pH. J Phys Chem A 107:1734–1741

    Article  CAS  Google Scholar 

  17. Zhao YP, Hu JY, Jin W (2008) Transformation of oxidation products and reduction of estrogenic activity of 17-estradiol by a heterogeneous photo-Fenton reaction. Environ Sci Technol 42:5277–5284

    Article  CAS  Google Scholar 

  18. Kasiri MB, Aleboyeh H, Aleboyeh A (2008) Modeling and optimization of heterogeneous photo-Fenton process with response surface methodology and artificial neural networks. Environ Sci Technol 42:7970–7975

    Article  CAS  Google Scholar 

  19. Guzsvány V, Banić N, Papp Z, Gaál F, Abramović B (2010) Comparison of different iron-based catalysts for photocatalytic removal of imidacloprid. Reac kinet Mech Cat 99:225–233

    Google Scholar 

  20. Li J, Wu F, Deng N, Glebov EM, Bazhin NM (2008) Degradation of orange II by heterogeneous photocatalytic reaction using montmorillonite KSF. React Kinet Catal Lett 95:247–255

    Article  CAS  Google Scholar 

  21. Parra S, Nadtotechenko V, Albers P, Kiwi J (2004) Discoloration of azo-dyes at biocompatible pH-values through an Fe-histidine complex immobilized on Nafion via Fenton-like processes. J Phys Chem B 108:4439–4448

    Article  CAS  Google Scholar 

  22. Li J, Ma W, Huang Y, Tao X, Zhao J, Xu Y (2004) Oxidative degradation of organic pollutants utilizing molecular oxygen and visible light over a supported catalyst of Fe(bpy) 2+3 in water. Appl Catal B 48:17–24

    Article  CAS  Google Scholar 

  23. Lednickyt LA, Stanbury DM (1983) Oxidation of tris(1, 10-phenanthroline)iron(II) by chlorine dioxide. J Am Chem Soc 105:3098–3101

    Article  Google Scholar 

  24. Hazmatz D, Blauer G (1983) Reactions of photoexcited methylene blue. Photochem Photobiol 38:385–387

    Article  Google Scholar 

  25. Banat F, Al-Asheh S, Al-Rawashdeh M, Nusair M (2005) Photodegradation of methylene blue dye by the UV/H202 and UV/acetone oxidation processes. Desalination 181:225–232

    Article  CAS  Google Scholar 

  26. Lucas MS, Peres JA (2006) Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigm. 71:236–244

    Article  CAS  Google Scholar 

  27. Tamimi M, Qourzal S, Barka N, Assabbane A, Ait-Ichou Y (2008) Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system. Sep and Purif Technol 61:103–108

    Article  CAS  Google Scholar 

  28. Muthuvel I, Swaminathan M (2008) Highly solar active Fe(III) immobilized alumina for the degradation of acid violet 7. Sol Energy Mater Sol Cells 92:857–863

    Article  CAS  Google Scholar 

  29. Jain A, Lodha S, Punjabi PB, Sharma VK, Suresh CA (2009) A study of catalytic behaviour of aromatic additives on the photo–Fenton degradation of phenol red. J Chem Sci 121:1027–1034

    Article  CAS  Google Scholar 

  30. Nedoloujko A, Kiwi J (2000) TiO2 speciation precluding mineralization of 4-tert-butylpyridine accelerated mineralization via fenton photo-assisted reaction. Wat Res 34:3277–3284

    Article  CAS  Google Scholar 

  31. Houas A, Lachheb KsibiM, Elaloui E, Guillard C, Herrmann JM (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31:145–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by Ministry of Housing and Urban–Rural Development (Grant No.: 06-K4-26), Provincial Key Laboratory of Environmental Science and Engineering (Grant No.: 2D051204), the Creative Project of Postgraduate of Jiangsu Province (Grant No.: CX09S-049Z), the Project from Suzhou Environmental Protection Bureau, the Project for the development of high-tech industry of Jiangsu Higher Education Institutions (JHZD04-010), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Qing Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Hu, FT., Liu, QQ. et al. Application of heterogenous catalyst of tris(1,10)-phenanthroline iron(II) loaded on zeolite for the photo-Fenton degradation of methylene blue. Reac Kinet Mech Cat 103, 299–310 (2011). https://doi.org/10.1007/s11144-011-0323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0323-2

Keywords

Navigation