Skip to main content
Log in

Method of Transverse Displacements Formulation for Calculating the HF Radio Wave Propagation Paths. Statement of the Problem and Preliminary Results

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Fundamentals of the method of transverse displacements for calculating the HF radio-wave propagation paths are presented. The method is based on the direct variational principle for the optical path functional, but is not reduced to solving the Euler—Lagrange equations. Instead, the initial guess given by an ordered set of points is transformed successively into a ray path, while its endpoints corresponding to the positions of the transmitter and the receiver are kept fixed throughout the entire iteration process. The results of calculation by the method of transverse displacements are compared with known analytical solutions. The importance of using only transverse displacements of the ray path in the optimization procedure is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. I. Kurkin and V. N. Popov, Normal Wave Method in the High-Frequency Radio Communication Problem [in Russian], Nauka, Mosocw (1981).

    Google Scholar 

  2. S. N. Ponomarchuk, N. V. Il’in, and M. S. Penzin, Soln.-Zemn. Fiz., No. 25, 33 (2014).

  3. D. S. Lukin and E. A. Palkin, Numerical Canonical Method in the Problems of Diffraction and Propagation of Electromagnetic Wvaes in Ionospheric Media [in Russian], Moscow Physical and Technical Institute, Moscow (1982).

    MATH  Google Scholar 

  4. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics in Inhomogeneous Media, Springer-Verlag, Berlin (1990).

    Book  Google Scholar 

  5. J. Haselgrove, J. Atmospher. Solar-Terr. Phys., 25, 397 (1963).

    Article  ADS  Google Scholar 

  6. R. M. Jones and J. J. Stephenson, OT Report, 75–76, U.S. Department of Commerce, Office of Telecommunication, U.S. Government Printing Office, Washington, USA (1975).

    Google Scholar 

  7. M. Lockwood, Radio Sci., 16, No. 3, 385 (1981).

    Article  ADS  Google Scholar 

  8. M. L. Evlashina, V. S. Mingalev, and G. A. Alad’ev, Geomagn. Aéron., 26, 82 (1986).

    ADS  Google Scholar 

  9. V. E. Zakharov and A. A. Chernyak, Vestn. RGU, No. 3, 36 (2007).

  10. D. V. Blagoveshschensky, T. D. Borisov, and D. D. Rogov, Radiophys. Quantum Electron., 53, No. 3, 147 (2010).

    Article  ADS  Google Scholar 

  11. D. S. Kotova, M. V. Klimenko, V. V. Klimenko, and V. E. Zakharova, Radiophys. Quantum Electron., 57, No. 7, 467 (2014).

    Article  Google Scholar 

  12. G. G. Vertogradov, V. P. Uryadov, and V. G. Vertogradov, Radiophys. Quantum Electron., 48, No. 6, 405 (2005).

    Article  ADS  Google Scholar 

  13. N. Y. Zaalov, E. M. Warrington, and A. J. Stocker, Radio Sci., 38, No. 3, 1052 (2003).

    Article  ADS  Google Scholar 

  14. M. Yu. Andreev, D. V. Blagoveshchensky, V. M. Vystavnoi, et al., Geomagn. Aeron., 47, No. 4, 502 (2007).

    Article  ADS  Google Scholar 

  15. D. V. Blagoveshchensky, M. Yu. Andreyev, V. S. Mingalev, et al., Adv. Space Res., 43, No. 12, 1974 (2009).

    Article  ADS  Google Scholar 

  16. G. A. Zhbankov, A. T. Karpachev, V. A. Telegin, and K. G. Tsybulya, Geomagn. Aeron., 50, No. 1, 119 (2010).

    Article  ADS  Google Scholar 

  17. A. Azzarone, C. Bianchi, M. Pezzopane, et al., Comp. Geosci., 42, 57 (2012).

    Article  Google Scholar 

  18. A. T. Karpachev, G. A. Zhbankov, and V. A. Telegin, Geomagn. Aeron., 53, No. 6, 761 (2013).

    Article  ADS  Google Scholar 

  19. A. Settimi, M. Pezzopane, M. Pietrella, et al., Radio Sci., 48, 167 (2013).

    Article  ADS  Google Scholar 

  20. N. N. Kalitkin, Numerical Methods [in Russian], Nauka, Mosocw (1978), p. 266.

    Google Scholar 

  21. J. Um and C. Thurber, Bull. Seismolog. Soc. Amer., 77, No. 3, 972 (1987).

    Google Scholar 

  22. T. J. Moser, G. Nolet, and R. Snieder, Bull. Seismolog. Soc. Amer., 82, No. 1, 259 (1992).

    Google Scholar 

  23. G. Mills and H. Jonsson, Phys. Rev. Lett., 72, 1124 (1994).

    Article  ADS  Google Scholar 

  24. L. Xu, G. Henkelman, C. T. Campbell, and H. Jonsson, Phys. Rev. Lett., 95, No. 14, 146103 (2005).

    Article  ADS  Google Scholar 

  25. G. Henkelman and H. Jonsson, Phys. Rev. Lett., 90, No. 11, 116101 (2003).

    Article  ADS  Google Scholar 

  26. R. F. Bessarab, V. M. Uzdin, and H. Jonsson, Phys. Rev. B, 88, No. 21, 214407 (2013).

    Article  ADS  Google Scholar 

  27. C. J. Coleman, Radio Sci., 46, No. 5, RS5016 (2011).

    Article  ADS  Google Scholar 

  28. H. Jonsson, G. Mills, and K. W. Jacobsen, Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, Singapore (1998).

    Google Scholar 

  29. D. Sheppard, R. Terrell, and G. Henkelman, J. Chem. Phys., 128, No. 13, 134106 (2008).

    Article  ADS  Google Scholar 

  30. O. I. Yakovlev, V. P. Yakubov, V. P. Uryadov, and A. G. Pavel’ev, Propagation of Radio Waves [in Russian], Lenand, Moscow (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Nosikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 1, pp. 1–14, January 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosikov, I.A., Bessarab, P.F. & Klimenko, M.V. Method of Transverse Displacements Formulation for Calculating the HF Radio Wave Propagation Paths. Statement of the Problem and Preliminary Results. Radiophys Quantum El 59, 1–12 (2016). https://doi.org/10.1007/s11141-016-9670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9670-1

Navigation