Skip to main content
Log in

Generalized Bessel functions of dihedral-type: expression as a series of confluent Horn functions and Laplace-type integral representation

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In the first part of this paper, we express the generalized Bessel function associated with dihedral systems and a constant multiplicity function as an infinite series of confluent Horn functions. The key ingredient leading to this expression is an extension of an identity involving Gegenbauer polynomials proved in a previous paper by the authors, together with the use of the Poisson kernel for these polynomials. In particular, we derive an integral representation of this generalized Bessel function over the standard simplex. The second part of this paper is concerned with even dihedral systems and boundary values of one of the variables. Still assuming that the multiplicity function is constant, we obtain a Laplace-type integral representation of the corresponding generalized Bessel function, which extends to all even dihedral systems a special instance of the Laplace-type integral representation proved in Amri and Demni (Moscow Math J 17(2):1–15, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The second formula displayed in [9], Corollary 1, is erroneous.

References

  1. Amri, B.: Note on Bessel functions of type \(A_{N-1}\). Integr. Transf. Spec. Funct. 25(4), 448–461 (2014)

    MathSciNet  Google Scholar 

  2. Amri, B., Demni, N.: Laplace-type integral representations of the generalized Bessel function and the Dunkl kernel of type B2. Moscow Math. J. 17(2), 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  3. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  4. Ben Said, S., Kobayashi, T., Orsted, B.: Laguerre semigroup and Dunkl operators. Compos. Math. 148(4), 1265–1336 (2012)

    Article  MathSciNet  Google Scholar 

  5. Biane, P., Bougerol, P., O’Connell, N.: Continuous crystal and Duistermaat–Heckman measure for Coxeter groups. Adv. Math. 221, 1522–1583 (2009)

    Article  MathSciNet  Google Scholar 

  6. Constales, D., De Bie, H., Lian, P.: Explicit formulas for the Dunkl dihedral kenel and the \((\kappa, a)\)-generalized Fourier kernel. J. Math. Anal. Appl. 460(2), 900–926 (2018)

    MathSciNet  Google Scholar 

  7. Deleaval, L., Demni, N., Youssfi, H.: Dunkl kernel associated with dihedral groups. J. Math. Anal. Appl. 432(2), 928–944 (2015)

    Article  MathSciNet  Google Scholar 

  8. Deleaval, L., Demni, N.: On a Neumann-type series of modified Bessel functions. Proc. Am. Math. Soc. 146(5), 2149–2161 (2018)

    Article  MathSciNet  Google Scholar 

  9. Demni, N.: Radial Dunkl processes associated with dihedral systems. Séminaire de Probabilités XLII, 153–169 (2009)

    MathSciNet  Google Scholar 

  10. Demni, N.: Generalized Bessel function associated with dihedral groups. J. Lie Theory 22, 81–91 (2012)

    MathSciNet  Google Scholar 

  11. Dunkl, C.F.: Poisson and Cauchy kernels for orthogonal polynomials with dihedral symmetry. J. Math. Anal. Appl. 143, 459–470 (1989)

    Article  MathSciNet  Google Scholar 

  12. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  13. Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. I. McGraw-Hill Book Company Inc., New York (1954)

    Google Scholar 

  14. Karlsson, P.W., Srivastava, H.M.: Multiple Gaussian Hypergeometric Series. Ellis Horwood Series: Mathematics and its Applications, p. 425. Ellis Horwood Ltd., Chichester; Halsted Press, New York (1985)

  15. Kobayashi, T., Mano, G.: The inversion formula and holomorphic extension of the minimal representation of the conformal group. Harmonic analysis, group representations, automorphic forms and invariant theory, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 12, pp. 151–208. World Sci. Publ., Hackensack, NJ (2007)

  16. Kostant, B.: On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. cole Norm. Sup. Tome 6(4), 413–455 (1973)

    Article  MathSciNet  Google Scholar 

  17. Maier, R.S.: Algebraic generating functions for Gegenbauer polynomials. Frontiers in orthogonal polynomials and \(q\)-series, Contemp. Math. Appl. Monogr. Expo. Lect. Notes, vol. 1, pp. 425–444. World Sci. Publ., Hackensack, NJ (2018)

  18. Xu, Y.: Intertwining operators associated to dihedral groups. To appear in Constr. Approx

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Deleaval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author acknowledges financial supports through the research program ANR-18-CE40-0021 (project HASCON) and the research program ANR-18-CE40-0035 (project REPKA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deleaval, L., Demni, N. Generalized Bessel functions of dihedral-type: expression as a series of confluent Horn functions and Laplace-type integral representation. Ramanujan J 54, 197–217 (2021). https://doi.org/10.1007/s11139-019-00234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-019-00234-0

Keywords

Mathematics Subject Classification

Navigation